Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimal Power Allocation for Average Detection Probability Criterion Over Flat Fading Channels
Date
2017-03-01
Author
Sarıtaş, Serkan
Sezer, Ahmet Dundar
Gezici, Sinan
Yuksel, Serdar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
145
views
5
downloads
Cite This
In this paper, the problem of optimal power allocation over flat fading additive white Gaussian noise channels is considered for maximizing the average detection probability of a signal emitted from a power constrained transmitter in the Neyman-Pearson framework. It is assumed that the transmitter can perform power adaptation under peak and average power constraints based on the channel state information fed back by the receiver. Using results from measure theory and convex analysis, it is shown that this optimization problem, which is in general nonconvex, has an equivalent Lagrangian dual that admits no duality gap and can be solved using dual decomposition. Efficient numerical algorithms are proposed to determine the optimal power allocation scheme under peak and average power constraints. Furthermore, the continuity and monotonicity properties of the corresponding optimal power allocation scheme are characterized with respect to the signal-to-noise ratio for any given value of the false alarm probability. Simulation examples are presented to corroborate the theoretical results and illustrate the performance improvements due to the proposed optimal power allocation strategy.
URI
https://hdl.handle.net/11511/94402
Journal
IEEE TRANSACTIONS ON SIGNAL PROCESSING
DOI
https://doi.org/10.1109/tsp.2016.2634552
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Joint spatial and temporal channel-shortening techniques for frequency selective fading MIMO channels
Toker, Canan; Chambers, JA; Baykal, Buyurman (2005-02-01)
It is well understood that the maximum likelihood estimator is a powerful equalisation technique for frequency selective fading channels, and in particular for MIMO systems. The complexity of this estimator, however, grows exponentially with the number of users and multipath taps, hence limiting the use of this algorithm in MIMO systems. In the paper, the authors propose a joint spatial and temporal channel-shortening filter as a pre-processor to reduce significantly the complexity of a maximum likelihood e...
Adaptive output feedback control with reduced sensitivity to sensor noise
Kutay, Ali Türker; Hovakimyan, N (2003-01-01)
We address adaptive output feedback control of uncertain nonlinear systems with noisy output measurements, in which both the dynamics and the dimension of the regulated system may be unknown, and only the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. A recently developed method proposes the use of a linear error observer that estimates the tracking ...
OPTIMAL-CONTROL OF THE FEED VOLTAGE OF A DIPOLE ANTENNA
ONDER, M; Kuzuoğlu, Mustafa (1992-04-01)
An optimization approach is presented for the problem of constructing the time-dependent voltage waveform at the input terminals of a dipole antenna such that the radiated electric field waveform at the far zone is equal to a predetermined function of time. This problem is treated as an optimal control problem where the control is the voltage at the input terminals of the dipole antenna and the functional to be minimized is a suitable norm of the difference of the required and calculated far zone electric f...
Dimension reduced robust beamforming for towed arrays
Topçu, Emre; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
Adaptive beamforming methods are used to obtain higher signal to interference plus noise ratio at the array output. However, these methods are very sensitive to steering vector and covariance matrix estimation errors. To overcome this issue, robust methods are usually employed. On the other hand, implementation of these robust methods can be computationally expensive for arrays with large number of sensors. Reduced dimension techniques aim to lower the computational load of adaptive beamforming algorithms w...
Adaptive control of DC link current in current source converter based STATCOM for improving its power losses
Karaduman, Ferdi; Ermiş, Muammer; Bilgin, Hazım Faruk; Department of Electrical and Electronics Engineering (2012)
In conventional three-phase PWM (Pulse Width Modulation) current source converter based STATCOM (Static Synchronous Compensator) applications, DC link current is kept constant at a predefined value and the reactive power of STATCOM is controlled by varying modulation index. This control strategy causes unnecessary power losses especially when the reactive power of STATCOM is low. For this purpose, in order to reduce the active power drawn by STATCOM, the modulation index can be maximized by adjusting DC lin...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sarıtaş, A. D. Sezer, S. Gezici, and S. Yuksel, “Optimal Power Allocation for Average Detection Probability Criterion Over Flat Fading Channels,”
IEEE TRANSACTIONS ON SIGNAL PROCESSING
, vol. 65, no. 6, pp. 1383–1398, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94402.