Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Adaptive output feedback control with reduced sensitivity to sensor noise
Date
2003-01-01
Author
Kutay, Ali Türker
Hovakimyan, N
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
We address adaptive output feedback control of uncertain nonlinear systems with noisy output measurements, in which both the dynamics and the dimension of the regulated system may be unknown, and only the relative degree of the regulated output is assumed to be known. Given a smooth reference trajectory, the problem is to design a controller that forces the system measurement to track it with bounded errors. A recently developed method proposes the use of a linear error observer that estimates the tracking error and its derivatives. Since the observer is full order, it also estimates the states of the controller, even though these states are exactly known. It has been observed experimentally that the resulting adaptive control architecture is very sensitive to sensor noise. In this paper we provide a specific reduced order observer that significantly reduces sensitivity to sensor noise in adaptive control design. Experimental results on a three degrees of freedom laboratory model helicopter are used to illustrate the effectiveness of the reduced order observer design.
Subject Keywords
Programmable control
,
Adaptive control
,
Output feedback
,
Noise reduction
,
Observers
,
Control systems
,
Nonlinear control systems
,
Nonlinear systems
,
Nonlinear dynamical systems
,
Trajectory
URI
https://hdl.handle.net/11511/53055
Conference Name
American Control Conference (ACC)
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Control System Architecture for Control of Non-Affine in Control, Open-Loop Unstable Underactuated Systems
Marangoz, Alp; Kutay, Ali Türker (2017-07-25)
In this paper, a control system architecture for control of non-affine in control, open-loop unstable underactuated system is discussed. Passivization of the unactuated (internal) system dynamics achieved through perturbation of trajectories of the actuated states, which are calculated through adaptive dynamic inversion technique, based on Tikhonov's theorem. Performance of the controller is shown through simulation of two open-loop unstable and locally uncontrollable example problems.
Digital controller design for sampled-data nonlinear systems
Üstüntürk, Ahmet; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2012)
In this thesis, digital controller design methods for sampled-data nonlinear systems are considered. Although sampled-data nonlinear control has attracted much attention in recent years, the controller design methods for sampled-data nonlinear systems are still limited. Therefore, a range of controller design methods for sampled-data nonlinear systems are developed such as backstepping, adaptive and robust backstepping, reduced-order observer-based output feedback controller design methods based on the Eule...
Non-local stabilization of nonlinear systems using switching manifolds
Banks, SP; Salamci, MU; McCaffrey, D (2000-02-01)
The stabilization of nonlinear systems is considered by reducing the problem to a lower dimensional switching manifold which is made globally attracting. The switching manifold is designed using the stable manifold of the unforced system. The technique is first developed in local case and then in the global situation of nonlinear vector fields on manifolds. The method generalizes the standard Lyapunov approach.
Fault-tolerant control of discrete-event systems with lower-bound specifications
Moor, Thomas; Schmidt, Klaus Verner (2015-06-01)
Fault-tolerant control addresses the control of dynamical systems such that they remain functional after the occurrence of a fault. To allow the controller to compensate for a fault, the system must exhibit certain redundancies. Alternatively, one may relax performance requirements for the closedloop behaviour after the occurrence of a fault. To achieve fault tolerance for a hierarchical control architecture, a combination of both options appears to be advisable: on each individual level of the hierarchy, t...
Adaptive fuzzy hysteresis band current control for reducing switching losses of hybrid active power filter
Durna, Emre (2018-05-01)
Although hysteresis band current control is an easy to implement and robust control method for industrial power electronics converters, it has also some disadvantages like variable and high switching frequency causing high switching losses. In this study, a novel adaptive fuzzy hysteresis band current control system is proposed by making use of fuzzy expressions of both hybrid active power filter (HAPF) current and integral of its harmonic components to reduce the switching losses of three-phase three-wire ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. T. Kutay and N. Hovakimyan, “Adaptive output feedback control with reduced sensitivity to sensor noise,” presented at the American Control Conference (ACC), Denver, CO, USA, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53055.