Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multichromic Vanadium Pentoxide Thin Films Through Ultrasonic Spray Deposition
Date
2021-10-01
Author
Tutel, Yusuf
Durukan, Mete Batuhan
Cakmak, Huseyin
Koylan, Serkan
Hekmat, Farzaneh
Ozensoy, Emrah
Ozbay, Ekmel
UDUM, YASEMİN
Toppare, Levent
Unalan, Husnu Emrah
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
Vanadium pentoxide (V2O5) is a highly promising material for optoelectronic applications due to its wide optical band gap, significant thermal/chemical stability, and intriguing multichromic properties. Nonetheless, the production of uniform and crack-free V2O5 thin films over large areas via conventional deposition methods remain to be a challenge. In this work, we demonstrate deposition of microscopically uniform, large area (15 cm x 15 cm), nanocrystalline and multichromic V2O5 thin films onto fluorine-doped tin oxide (FTO) coated glass substrates via ultrasonic spray deposition (USD) method. Thin-film formation behavior, microstructural and optoelectronic properties of the deposited films were investigated as a function of post-deposition annealing temperature. Electrochromic performance of the fabricated films up to an area of 15 cm x 15 cm was monitored using cyclic voltammetry (CV), where 3 different coloration states of V2O5 were observed under different applied potentials. Electrochromic devices fabricated with the deposited V2O5 thin films were found to be stable up to 1000 cycles. Results presented herein provide a new roadmap for the large area deposition of V2O5 through USD method, which can be readily extended to a vast number of other functional metal oxide systems. (c) 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
URI
https://hdl.handle.net/11511/94491
Journal
JOURNAL OF THE ELECTROCHEMICAL SOCIETY
DOI
https://doi.org/10.1149/1945-7111/ac2dcf
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Highly Sensitive and Tunable Fano-like Rod-Type Silicon Photonic Crystal Refractive Index Sensor
Kılıç, Selahattin Cem; Kocaman, Serdar (2021-01-01)
IEEEA highly sensitive and tunable 2D rod-type silicon photonic crystal cavity based biosensor configuration has been designed and numerically analyzed. The structure is optimized so that the light-matter interaction is maximized in the cavity region. Out-of-plane light confinement is achieved by sandwiching the rods between metal plates, and tuning is achieved by introducing an air-gap between on top of the rods and the metal plate. A single rod is positioned in the middle of the waveguide so that the cavi...
Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H
Saleh, Z. M.; NASSER, H; ÖZKOL, E; GÜNÖVEN, M; Abak, Musa Kurtuluş; Canlı, Sedat; Bek, Alpan; Turan, Raşit (2015-10-24)
Plasmonic interfaces consisting of silver nanoparticles of different sizes (50-100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size an...
TiN(IV) oxide coated gold nanoparticles: synthesis, characterization and investigation of surface enhanced raman scattering activities
Elçi, Aylin; Nalbant Esentürk, Emren; Department of Chemistry (2017)
Noble metal nanoparticles (i.e. gold (Au) and silver (Ag)) have received enormous attention due to their superior optical properties related to localized surface plasmon resonance (LSPR) and their potential applications in sensing, imaging, catalysis and optoelectronic devices. In particular, the ones with anisotropic morphologies have attracted intense interest from the researchers because of their superior optoelectronic properties. High electromagnetic field forms on the nanoparticle surface. The intensi...
Nano patterning of AISI 316L stainless steel with Nonlinear Laser Lithography: Sliding under dry and oil-lubricated conditions
Gnilitskyi, Iaroslav; Rotundo, Fabio; Martini, Carla; Pavlov, Ihor; Ilday, Serim; Vovk, Evgeny; Ilday, Fatih Omer; Orazi, Leonardo (2016-07-01)
Femtosecond laser-based Nonlinear Laser Lithography (NLL) was applied to AISI 316L stainless steel, which requires surface modification to achieve satisfactory tribological behaviour. NLL advances over the well-known Laser Induced Periodic Surface Structures (LIPSS) in terms of uniformity and long-range order of high speeds, over large areas. A galvanometric scanner head was used for an high production rate. Dry and lubricated sliding tests, considering different orientations of the nanotexture showed that ...
Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence
Keleştemur, Yusuf; Anni, Marco; Yakunin, Sergii; De Giorgi, Maria Luisa; Kovalenko, Maksym V. (2019-12-01)
Semiconductor nanoplatelets (NPLs) have emerged as a very promising class of colloidal nanocrystals for light-emitting devices owing to their quantum-well-like electronic and optical characteristics. However, their lower photoluminescence quantum yield (PLQY) and limited stability have hampered the realization of their outstanding luminescent properties in device applications. Here, to address these deficiencies, we present a two-step synthetic approach that enables the synthesis of core/shell NPLs with pre...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Tutel et al., “Multichromic Vanadium Pentoxide Thin Films Through Ultrasonic Spray Deposition,”
JOURNAL OF THE ELECTROCHEMICAL SOCIETY
, vol. 168, no. 10, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94491.