Adversarial Attacks on CFO-Based Continuous Physical Layer Authentication: A Game Theoretic Study

Sarıtaş, Serkan
Thobaben, Ragnar
Sandberg, Henrik
Dan, Gyorgy
5G and beyond 5G low power wireless networks make Internet of Things (IoT) and Cyber-Physical Systems (CPS) applications capable of serving massive amounts of devices and machines. Due to the broadcast nature of wireless networks, it is crucial to secure the communication between these devices and machines from spoofing and interception attacks. This paper is concerned with the security of carrier frequency offset (CFO) based continuous physical layer authentication. The interaction between an attacker and a defender is modeled as a dynamic discrete leader-follower game with imperfect information. In the considered model, a legitimate user (Alice) communicates with the defender/operator (Bob) and is authorized by her CFO continuously. The attacker (Eve), by listening/eavesdropping the communication between Alice and Bob, tries to learn the CFO characteristics of Alice and aims to inject malicious packets to Bob by impersonating Alice. First, by showing that the optimal attacker strategy is a threshold policy, an optimization problem of the attacker with exponentially growing action space is reduced to a tractable integer optimization problem with a single parameter, then the corresponding defender cost is derived. Extensive simulations illustrate the characteristics of optimal strategies/utilities of the players depending on the actions, and show that the defender's optimal false positive rate causes attack success probabilities to be in the order of 0.99. The results show the importance of the parameters while finding the balance between system security and efficiency.
2021 IEEE International Conference on Communications, ICC 2021


Real-time intrusion detection and prevention system for SDN-based IoT networks
Sarıça, Alper Kaan; Angın, Pelin; Department of Computer Engineering (2021-9)
The significant advances in wireless networks with the 5G networks have made possible a variety of new IoT use cases. 5G and beyond networks will significantly rely on network virtualization technologies such as SDN and NFV. The prevalence of IoT and the large attack surface it has created calls for SDN-based intelligent security solutions that achieve real-time, automated intrusion detection and mitigation. In this thesis, we propose a real-time intrusion detection and mitigation system for SDN, which aims...
Direction of Arrival estimation by using Alternating Direction Method of Multipliers in distributed sensor array networks
Nurbaş, Ekin; Tuncer, Temel Engin; Onat, Emrah; Department of Electrical and Electronics Engineering (2022-8-26)
In recent years, developments in microprocessor and wireless communication technologies have benefited a variety of distributed sensor network applications, including array signal processing. Researchers have been investigating distributed implementations of array signal processing algorithms, such as Direction of Arrival Estimation, for a variety of applications. Performance and practical implementations of those algorithms are affected by a variety of factors, such as inter-array phase and frequency match...
Differential K-band vector modulator IC design at 180 NM CMOS SOI process
Güngör, Ömer Fevzi; Aydın Çivi, Hatice Özlem; Koçer, Fatih; Department of Electrical and Electronics Engineering (2019)
Massive MIMO and beamforming are technologies that may enable ultrafast 5G network. They are predicted to be used widely in next-generation high capacity communication systems. In the implementation of beamforming and MIMO, the large number of antennas and RF control components are utilized. However; some challenges related to power consumption, control complexity, cost, and size of transceiver have arisen. Vector Modulator (VM) may be one possible effective solution to these challenges because it merges th...
Enabling slotted Aloha-NOMA for massive M2M communication in IoT networks
Elkourdi, Mohamed; Mazin, Asim; Balevi, Eren; Gitlin, Richard D. (2018-05-23)
© 2018 IEEE.The Internet of things (IoT), which is the network of physical devices embedded with sensors, actuators, and connectivity, is being accelerated into the mainstream by the emergence of 5G wireless networking. This paper presents an uncoordinated non-orthogonal random access protocol, which is an enhancement to the recently introduced Slotted Aloha-NOMA (SAN) protocol that provides high throughput, while being matched to the low complexity requirements and the sporadic traffic pattern of IoT devic...
Explainable Security in SDN-Based IoT Networks
Sarica, Alper Kaan; Angın, Pelin (2020-12-01)
The significant advances in wireless networks in the past decade have made a variety of Internet of Things (IoT) use cases possible, greatly facilitating many operations in our daily lives. IoT is only expected to grow with 5G and beyond networks, which will primarily rely on software-defined networking (SDN) and network functions virtualization for achieving the promised quality of service. The prevalence of IoT and the large attack surface that it has created calls for SDN-based intelligent security solut...
Citation Formats
S. Sarıtaş, R. Thobaben, H. Sandberg, and G. Dan, “Adversarial Attacks on CFO-Based Continuous Physical Layer Authentication: A Game Theoretic Study,” presented at the 2021 IEEE International Conference on Communications, ICC 2021, Virtual, Online, Kanada, 2021, Accessed: 00, 2021. [Online]. Available: