Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nanoassemblies of Porphyrin Derivatives
Date
2021-10-01
Author
Malcıoğlu, Osman Barış
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/94513
Relation
TOPICS IN NANOSCIENCE - VOLUME 1: BASIC VIEWS, COMPLEX NANOSYSTEMS: TYPICAL RESULTS AND FUTURE
Collections
Department of Physics, Book / Book chapter
Suggestions
OpenMETU
Core
Nanofeature Size and Morphology of Tantalum Oxide Surfaces Control Osteoblast Functions
USLU, ECE; Mimiroğlu, Didem; Ercan, Batur (2021-01-01)
Tantalum is one of the most corrosion-resistant materials and has mechanical properties that are suitable for orthopedic applications. However, tantalum exhibits bioinert characteristics and cannot promote the desired level of osseointegration with juxtaposed bone tissues. To enhance the bioactivity of tantalum, nanoscale surface modifications via anodization could be a potential approach. In this study, surface features having nanotubular, nanodimple, and nanocoral morphologies were fabricated onto tantalu...
NANOSCALE FLUID-STRUCTURE INTERACTIONS IN CYTOPLASM DURING FREEZING
Özçelikkale, Altuğ (2013-01-01)
In this study, a theoretical model is developed to simulate the biophysical events in the intracellular spaces considering the biphasic, i.e., poroelastic, behavior of the cytoplasm. Most previous studies in the cryobiology literature have modeled the biophysical response of cells to freezing assuming the spatial homogeneity of all physical properties within the intracellular space without considering fluid-structure interaction in both the intracellular and extracellular spaces. However, a few recent studi...
Nanostructure of montmorillonite barrier layers: A new insight into the mechanism of flammability reduction in polymer nanocomposites
Isitman, Nihat Ali; Kaynak, Cevdet (2011-12-01)
This study describes the mechanism of flammability reduction in flame-retarded polymer matrix organo-montmorillonite reinforced nanocomposites. Morphologies of untested polymer nanocomposites and char residues formed by combustion in the mass loss calorimeter are characterized by XRD and TEM techniques. It is postulated that a combination of well-dispersed montmorillonite platelets and flame retardants in the polymer matrix provides nano-structured char formation. Initial montmorillonite dispersion in flame...
Nanoparticle adsorption-induced configurations of liquid crystal droplets
Şengül, Selin; Büküşoğlu, Emre (2021-08-22)
Nanomorphology and fire behavior of polystyrene/organoclay nanocomposites containing brominated epoxy and antimony oxide
Isitman, Nihat Ali; Sipahioglu, B. Melike; Kaynak, Cevdet (Wiley, 2012-06-01)
Organoclay nanocomposites were prepared by ultrasound-assisted solution intercalation technique based on polystyrene containing brominated epoxy and a combination of brominated epoxy and antimony oxide. Aspects of nanomorphology and nanodispersion were investigated by X-ray diffraction and transmission electron microscopy whereas flammability and reaction to fire were evaluated using limiting oxygen index, UL-94, and mass loss calorimeter tests. Polystyrene/brominated-epoxy-blend-based nanocomposites showed...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. B. Malcıoğlu,
Nanoassemblies of Porphyrin Derivatives
. 2021.