Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nanomorphology and fire behavior of polystyrene/organoclay nanocomposites containing brominated epoxy and antimony oxide
Date
2012-06-01
Author
Isitman, Nihat Ali
Sipahioglu, B. Melike
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
Organoclay nanocomposites were prepared by ultrasound-assisted solution intercalation technique based on polystyrene containing brominated epoxy and a combination of brominated epoxy and antimony oxide. Aspects of nanomorphology and nanodispersion were investigated by X-ray diffraction and transmission electron microscopy whereas flammability and reaction to fire were evaluated using limiting oxygen index, UL-94, and mass loss calorimeter tests. Polystyrene/brominated-epoxy-blend-based nanocomposites showed mixed intercalatedexfoliated nanomorphology where polymer-intercalated crystallites predominantly exist in polystyrene matrix and exfoliated silicate layers reside on polystyrene/brominated epoxy phase boundaries and within brominated epoxy domains. Organoclay was found to impart a compatibilization effect on polystyrene and dispersed brominated epoxy, which facilitates uniform distribution of a fine flame-retarding phase within the matrix. With the reduction of the rate at which decomposition products evolve into the gas phase, organoclay nanocomposites showed notable reductions in peak heat release rate and increases in limiting oxygen index. The gas-phase hot radical entrapment by halogenated flame-retardant system was coupled with the condensed-phase physical action of nanodispersed organoclay, which increased the overall fire-retardant effectiveness. Fire-retardant mechanisms of nanocomposites based on polystyrene/brominated epoxy blends were attributed to nanoconfinement and tortuous pathway effects of organoclay rather than to carbonaceous char formation proposed earlier for polystyrene/organoclay systems without conventional flame retardants. Copyright (C) 2011 John Wiley & Sons, Ltd.
Subject Keywords
Polymers and Plastics
URI
https://hdl.handle.net/11511/39408
Journal
POLYMERS FOR ADVANCED TECHNOLOGIES
DOI
https://doi.org/10.1002/pat.2001
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Mechanical properties of plasma surface-modified calcium carbonate-polypropylene composites
Akovali, G; Akman, MA (Wiley, 1997-02-01)
Calcium carbonate was surface-modified by plasma-polymerized acetylene and the effect of surface modification on the mechanical properties of calcium carbonate-polypropylene composites was investigated. Two different plasma polymerization conditions were selected and applied. Chemical structures of plasma-polymerized acetylene products were identified. Mechanical and thermal properties of the composites prepared were evaluated and the effects of surface modification on the extent of adhesion of filler to th...
Electrochemical polymerization and characterization of polyether-substituted aniline derivatives
Tirkeş, Süha; Oenal, Ahmet M. (Wiley, 2007-08-01)
New compounds consisting of aniline units linked by polyether bridges have been synthesized and their electrochemical polymerization was performed via constant potential electrolysis and cyclic voltammetry in an aqueous solution containing 3.0 moI L-1 H2SO4. Chemical polymerization was carried out using (NH4)(2)S2O8 as oxidizing agent. It was found that both methods gave the same polymer product without any cleavage of the polyether bridge between aniline rings. The polymers were characterized using the Fou...
Synergistic effect of boron containing substances on flame retardancy and thermal stability of clay containing intumescent polypropylene nanoclay composites
Dogan, Mehmet; Bayramlı, Erdal (Wiley, 2011-12-01)
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO(4)), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)-nanoclay-intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA), and cone calorimeter.
Properties of blends prepared from surface-modified low-density polyethylene and poly(vinyl chloride)
Akovali, G; Torun, TT (Wiley, 1997-03-01)
Improvement of adhesion between low-density polyethylene (LDPE) and poly(vinyl chloride) (PVC) in their blends was attempted by plasma modification of their surfaces. A series of different plasma treatments, vinyl chloride or carbon tetrachloride plasma for PE and acetylene plasma for PVC, were employed. In addition, an oligomeric copolymer of PE-VC was also tested in the blend. After modification, different degrees of improvement were obtained in mechanical properties, ranging from slight for acetylene pla...
Nanocomposites based on blends of polyethylene
Işık, Fatma; Yılmazer, Ülkü; Department of Chemical Engineering (2005)
In this study the effects of compatibilizer type, organoclay type, and the addition order of components on the morphological, thermal, mechanical and flow properties of ternary nanocomposites based on low density polyethylene, LDPE were investigated. As compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate, ethylene/glycidyl methacrylate, and ethylene/butyl acrylate/maleic anhydride; as organoclay Cloisite? 15A, Cloisite? 25A and Cloisite? 30B were used. All samples were prepared by a co-rotating t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. A. Isitman, B. M. Sipahioglu, and C. Kaynak, “Nanomorphology and fire behavior of polystyrene/organoclay nanocomposites containing brominated epoxy and antimony oxide,”
POLYMERS FOR ADVANCED TECHNOLOGIES
, pp. 984–991, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39408.