Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling
Date
2022-01-01
Author
AKIN, TAYLAN
Baser, Ali
Saracoglu, Onder
Akın, Serhat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
388
views
0
downloads
Cite This
Geothermal energy is commonly recognized as an environmentally friendly source of energy. However, geothermal fluids have unusually high CO2 content, particularly, in carbonated geothermal reservoirs. An efficient method to mitigate the CO2 emissions of geothermal power plants is to re-inject the captured CO2 with the effluent fluid to mineralize mainly into calcite under reservoir conditions (e.g., reservoir temperatures ranging from 200 to 220 degrees C). One of the major concerns about the re-injection of the captured CO2 is to predict the geochemical interaction between the injected fluid-CO2 and rock, and the corresponding alterations that occur due to the re-injection in the reservoir parameters. For this study, we have selected one of the largest geothermal fields, which is located in the western part of Turkey. A predictive 3-D reactive transport modeling is carried out using TOUGHREACT v1.2 for potential fluid-CO2 injection into deep metamorphic formation rocks consisting of marble, quartzite, and schist. Each rock type with different mineral constituents is examined in three different scenarios. Moreover, in each scenario, three annual injection rates, 500, 2000, and 4000 tons of CO2 for ten years of continuous injection are tested. The aims of the study are first the evaluation of the dynamic fluid-rock interactions with maximum possible CO2-charged fluid injection and second the identification of the mineralization process. The modeling results indicate that the maximum CO2-charged fluid mixture remains stable as a single-phase in all scenarios. The mineralization process of CO2 in the reservoir is limited due to the different mineral contents of the considered metamorphic rocks and the differences between the CO2 mass fraction of the injected fluid and the reservoir. In addition, the injected fluid temperature, the pH, the convective dispersive fluxes between the wells also affect the chemical process. These results show differences compared to the CarbFix project carried out in basaltic Icelandic geothermal reservoirs where the CO2 mineralization process was successful.
Subject Keywords
Reactive transport
,
GECO
,
CO2 injection
,
TOUGHREACT
,
Marble
,
Schist
,
IN-SITU MINERALIZATION
,
CARBFIX SITE
,
CO2
,
H2S
,
PERMEABILITY
,
FLOW
,
SEQUESTRATION
,
EVOLUTION
,
CARBON
URI
https://hdl.handle.net/11511/95145
Journal
GEOTHERMICS
DOI
https://doi.org/10.1016/j.geothermics.2021.102271
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Geochemical modeling of NCG injection in a geothermal well using doublet well model
İlgin, Buğrahan; Akın, Serhat; Erol, Selçuk; Department of Petroleum and Natural Gas Engineering (2021-7-29)
Geothermal energy is regarded as an environmentally friendly source of energy. However, the amount of non-condensable gases (NCG), which are co-produced with brine, are significantly high in the geothermal fields of Turkey. To overcome the NCG emission produced by power plants, which is mainly CO2, one of the efficient methods is re-injecting the captured NCG into the reservoir. The ultimate aim of the reinjection is to mineralize CO2 in the reservoir as carbonate minerals. In this thesis, a reactive transp...
Flexibility modelling of natural gas contracts: İstanbul case
Yazıcı, Caner Fuad; Kestel, Sevtap Ayşe; Kalaycı, Erkan; Department of Financial Mathematics (2016)
Natural gas is one of the main energy source in the world and plays an important role in energy demand. The liberalization process in the natural gas market has shifted the focus on the Local Distribution Companies (LDCs) which make the procurement and transportation decisions. The decisions such as the pipeline sales, Liquefied Natural Gas (LNG) sales, other sources of natural gas procurement, transportation and storage opportunities provide the LDCs an opportunity to trade the natural gas in a least-costs...
Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency
Hadjdida, Abdelkader; Bourahla, Mohamed; Ertan, Hulusi Bülent; Bekhti, Mohamed (2018-12-01)
Currently, solar energy is promising the primary source of renewable energy that has a great potential to generate power for an extremely low operating cost when compared to already existing power generation technologies. Increasing the efficiency of solar cells is a major goal and the prominent factor in photovoltaic system research. Current triple junction solar cells reach 30% and the next generation will bring 35% in 5 years to peak at 40%. These cells are used in space environment and in terrestrial sy...
Biogas generation by two-phase anaerobic digestion of organic fraction of municipal solid waste
Dogan, Eylem; Demirer, Göksel Niyazi (2012-11-01)
The organic fraction of municipal solid waste can be a significant energy source for renewable energy generation. The total production of municipal solid waste in Turkey was 25 x 10(6) tones per year. Anaerobic digestion (AD) process may be a solution to the problems of energy demand and waste management since it provides biomethanation along with waste stabilization. AD can be operated in single or two phase configurations. Two-phase processes have some advantages over one phase systems in terms of selecti...
Seismic velocity characterisation and survey design to assess CO2 injection performance at Kizildere geothermal field
Parlaktuna, Mahmut; Parlaktuna, Burak; Sınayuç, Çağlar; Senturk, Erdinc; Tonguc, Erinc; Demircioglu, Oncu; Poletto, Flavio; Bohm, Gualtiero; Bellezza, Cinzia; Farina, Biancamaria (2021-08-01)
The noncondensable gases in most geothermal resources include CO2 and smaller amounts of other gases. Currently, the worldwide geothermal power is a small sector within the energy industry, and CO2 emissions related to the utilisation of geothermal resources are consequently small. In some countries, however, such as Turkey and Iceland, geothermal energy production contributes significantly to their energy budget, and their CO2 emissions are relatively significant. SUCCEED is a targeted innovation and resea...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. AKIN, A. Baser, O. Saracoglu, and S. Akın, “Fluid-CO2 injection impact in a geothermal reservoir: Evaluation with 3-D reactive transport modeling,”
GEOTHERMICS
, vol. 98, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/95145.