Thin Lens Narcissus Model in Infrared Lens Design with Cooled Detectors

2022-01-01
Aslan, Serhat
Yerli, Sinan Kaan
A mathematical model of the narcissus effect in infrared lenses with cooled detectors is discussed. The proposed model enables optical designers to take the narcissus performance of infrared lenses into consideration in the thin lens predesign stage. Third order thin lens aberration theory is the basis for the newly proposed narcissus analysis. Two narcissus metrics are defined in terms of structural parameters of the infrared lens to be designed. The metrics provide an indirect way of controlling narcissus performance in thin lens predesign. A long wave infrared lens is discussed from a narcissus perspective within the proposed model as an example. It is shown that the proposed narcissus model is a very effective way of controlling narcissus performance, starting from the early stages of lens design
Applied Optics

Suggestions

Ensemble Monte Carlo simulation of quantum well infrared photodetectors
Memiş, Sema; Tomak, Mehmet; Department of Physics (2006)
Quantum well infrared photodetectors (QWIPs) have recently emerged as a potential alternative to the conventional detectors utilizing low bandgap semiconductors for infrared applications. There has been a considerable amount of experimental and theoretical work towards a better understanding of QWIP operation, whereas there is a lack of knowledge on the underlying physics. This work provides a better understanding of QWIP operation and underlying physics through particle simulations using the ensemble Monte...
Single and dual band quantum well infrared photodetector focal plane arrays on inp substrates
Eker, Süleyman Umut; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2010)
Excellent uniformity and mature material properties of Quantum Well Infrared Photodetectors (QWIPs) have allowed the realization of large format, low cost staring focal plane arrays (FPAs) in various thermal imaging bands. AlGaAs/InGaAs and AlGaAs/GaAs materials systems have been the standard systems for the construction of mid-wavelength infrared (MWIR) and long-wavelength (LWIR) QWIPs. However AlGaAs/GaAs QWIP FPAs suffer from low quantum and conversion efficiencies under high frame rate (low integration ...
Nano-scale phase separation and glass forming ability of iron-boron based metallic glasses
Aykol, Muratahan; Akdeniz, Mahmut Vedat; Department of Metallurgical and Materials Engineering (2008)
This study is pertinent to setting a connection between glass forming ability (GFA) and topology of Fe-B based metallic glasses by combining intimate investigations on spatial atomic arrangements conducted via solid computer simulations with experimentations on high GFA bulk metallic glasses. In order to construct a theoretical framework, the nano-scale phase separation encountered in metallic glasses is investigated for amorphous Fe80B20 and Fe83B17 alloys via Monte Carlo equilibration and reverse Monte Ca...
Soot and nanoparticle formation in laminar and turbulent flames
Commodo, M.; Violi, S.; D'Anna, A.; D'Alessio, A.; Allouis, Christophe Gerard; Beretta, F.; Minutolo, P. (2007-01-01)
A new optical diagnostic method has been developed based on the interaction of a pulsed UV laser source with combustion-generated aerosols. This method allows characterization of nanoparticles of organic carbon (NOC) and soot by point measurements. Fluorescence and incandescence measurements induced by the fifth harmonic of a Nd-YAG laser at 213 nm are used for the determination of the volume fractions of particulates in a laminar premixed flame and in a turbulent non-premixed flame of ethylene/air. The sel...
Ensemble monte carlo simulation of quantum well infrared photodetectors, and inp based long wavelength quantum well infrared photodetectors for thermal imaging
Cellek, Oray Orkun; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2006)
Quantum well infrared photodetectors (QWIP) utilize quantum wells of large bandgap materials to detect infrared radiation. When compared to conventional low bandgap LWIR photodetectors, the QWIP technology offers largest format thermal imagers with much better uniformity. The theoretical part of this study includes the development of a QWIP ensemble Monte Carlo simulator. Capture paths of electrons to quantum wells are simulated in detail. For standard AlGaAs/GaAs QWIPs, at medium and high E-fields L valley...
Citation Formats
S. Aslan and S. K. Yerli, “Thin Lens Narcissus Model in Infrared Lens Design with Cooled Detectors,” Applied Optics, vol. 61, no. 3, pp. 728–736, 2022, Accessed: 00, 2022. [Online]. Available: https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-61-3-728&id=468467.