1-6 GHz UWB phase shifter design and implementation with surface micromachining

2012-07-02
Tokgöz, Korkut Kaan
Çetintepe, Çaǧri
Demir, Şimşek
An Ultra-wideband (UWB), 1-to-6 GHz, 4-bit phase shifter design is presented. The proposed phase shifter utilizes lumped-element, three-stage all-pass network to achieve UWB phase characteristics. Ideal predesign of the phase shifter is done successfully by following the three-stage all-pass network design procedure described in this paper. Following the ideal predesign, circuit elements are implemented using lumped planar spiral inductors (PSIs) and Metal-Insulator-Metal (MIM) capacitors for each phase shift bit and a practical design incorporating element parasitics is accomplished. The simulation results for each phase shift bit as well as all bit-states are provided for the practical design and the ideal one along with phase-related error information. According to the simulation results, the practical design exhibits a maximum rms phase error of 5.3% over 1-6 GHz frequency band. Prototype planar spiral inductors are fabricated using an in-house surface micromachining technology and a good agreement is attained between the simulation and measurement results, which validates the design procedure. © 2012 IEEE.
6th European Conference on Antennas and Propagation, EuCAP 2012

Suggestions

35 GHz phased array antenna using DMTL phase shifters
Guclu, Caner; Cetintepe, Cagri; Aydın Çivi, Hatice Özlem; Demir, Şimşek; Akın, Tayfun (2010-08-27)
This paper presents the design of a monolithic phased array antenna with DMTL phase shifters on quartz substrate operating at 35 GHz. The design integrates DMTL phase shifters, rectangular slot antennas with the feed network comprising CPW lines, CPW T-junction and corners. On the four branches of the antenna, there are 5-bit phase shifters using 31 MEMS bridges, covering 360° with a resolution of 11.25°.
S-band hybrid 4 bit phase shifter
Erkek, Eser; Demir, Şimşek (2010-12-20)
S-band hybrid 4 bit phase shifter of 22.5° phase resolution is designed, simulated, fabricated and measured. Bits are separately designed to maintain low phase errors and return loss. In this manner, fabrication and measurements are performed for each bit. These measurements are carried on since each bit reached to its acceptable level of operation. According to the outcomes and acquired knowledge, layout for optimum cascading of 4 bits is developed. Measurement results are compared with simulations and rep...
Design of an active microstrip array using a microwave circuit simulator
Demir, S; Toker, Canan; Hizal, A (1997-02-26)
An active antenna array design and simulation of this design with a microwave circuit simulator are presented. This active antenna array is a TV receive only (TVRO) antenna operating at 10 GHz. It is a 8x4 array of rectangular microstrip patch antennas. Eight low noise pHEMTs are placed in the antenna. Passive antenna characteristics are usually obtained by analytical techniques or using special softwares for this purpose. The numerical representation as well as the nonreciprocal nature of the active device...
A self-powered integrated interface circuit for low power piezoelectric energy harvesters
Chamanian, S.; Zorlu, O.; Külah, Haluk; Muhtaroglu, A. (2013-12-18)
This paper presents a CMOS integrated interface circuit for piezoelectric energy harvesters (PEH). A fully self-powered circuit, based on Synchronous Electric Charge extraction (SECE) technique, is implemented for non-resonant piezoelectric harvesters generating low power, in 10s to 100s mu W range. The circuit is realized in standard 180 nm UMC CMOS technology. A switch control circuit is designed and optimized to extract maximum power independently from excitation changes of the PEH. The total power loss ...
Integrated optical modulators with zero index metamaterials based on photonic crystal slab waveguides
Yildirim, Mustafa; GÖVDELİ, ALPEREN; Kocaman, Serdar (2019-01-01)
A novel integrated optical modulator design is presented using zero index metamaterial-based Mach-Zehnder Interferometer with photonic crystal phase shifters. The phase modulation relies on the shift between the photonic bandgaps having non-zero and zero effective refractive indices. A small change in the bulk index results in an effective index change between the arms of the MZI due to the disturbance of the band structure. Thus, such a structure provides a new approach for phase modulation on integrated o...
Citation Formats
K. K. Tokgöz, Ç. Çetintepe, and Ş. Demir, “1-6 GHz UWB phase shifter design and implementation with surface micromachining,” presented at the 6th European Conference on Antennas and Propagation, EuCAP 2012, Prague, Çek Cumhuriyeti, 2012, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84862851193&origin=inward.