Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A data-informatics method to quantitatively represent ternary eutectic microstructures
Download
index.pdf
Date
2019-02-01
Author
Sargın, Irmak
Beckman, Scott P.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
132
views
87
downloads
Cite This
Many of the useful properties of modern engineering materials are determined by the material's microstructure. Controlling the microstructure requires an understanding of the complex dynamics underlying its evolution during processing. Investigating the thermal and mass transport phenomena responsible for a structure requires establishing a common language to quantitatively represent the microstructures being examined. Although such a common language exists for some of the simple structures, which has allowed these materials to be engineered, there has yet to be a method to represent complex systems, such as the ternary microstructures, which are important for many technologies. Here we show how stereological and data science methods can be combined to quantitatively represent ternary eutectic microstructures relative to a set of exemplars that span the stereological attribute space. Our method uniquely describes ternary eutectic microstructures, allowing images from different studies, with different compositions and processing histories, to be quantitatively compared. By overcoming this long-standing challenge, it becomes possible to begin to make progress toward a quantitatively predictive theory of ternary eutectic growth. We anticipate that the method of quantifying instances of an object relative to a set of exemplars spanning attribute-space will be broadly applied to classify materials structures, and may also find uses in other fields.
URI
https://hdl.handle.net/11511/96214
Journal
SCIENTIFIC REPORTS
DOI
https://doi.org/10.1038/s41598-018-37794-y
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
The Mechanism of brittle fracture in CN3MN grade superaustenitic stainless steel /
Başkan, Mertcan; Kalay, Yunus Eren; Department of Metallurgical and Materials Engineering (2015)
Steel is one of the most widely used materials in almost every major engineering application. Their uses extend from the large constructions in the capitals to the small kitchenware products in houses. Steel has been known since the ancient times, and the properties of steel have been enhanced for hundreds of years by the help of the improvements in metallurgy and material science. Steel has been almost at the center to the discovery-based development of new alloys with notable properties. The steel family ...
A 5-Parameter Isothermal Creep Model For Polymeric Liners
Güner, Doğukan; Öztürk, Hasan (null; 2019-07-12)
Polymeric materials are commonly used as load-carrying components in different structural applications due to the ease of manufacture, installation and long lifetime properties. In civil and mining engineering applications, fast-setting thin polymeric liners are in demand as areal support elements in underground openings. The stability of the openings is maintained by polymeric liners that might sustain the constant loads due to the presence of wedge blocks. Therefore, their time-dependent mechanical respo...
Finite element modelling of defective carbon nanotube reinforced polymer composites
Özel, Coşkun Kağan; Esat, Volkan; Sustainable Environment and Energy Systems (2019-8)
Carbon nanotubes (CNTs) attract significant attention being one of the superior engineering materials that possess exceptional material properties. One of the uses of carbon nanotubes is as reinforcements in a polymer matrix to form Carbon Nanotube Reinforced Polymer (CNTRP) composites. CNTRPs are lightweight structures with enhanced mechanical properties due to CNT addition. It is well known that CNTs do not usually exist in perfect structural form. They possess defects such as vacancies or Stone-Wales (SW...
A new look at oxide formation at the copper/electrolyte interface by in situ spectroscopies
Toparlı, Çiğdem; Erbe, Andreas (2015-01-01)
The widely used engineering material copper is a prototype of an electrochemically passive metal. In this work, the passive films on evaporated copper in 0.1 M NaOH are investigated in situ and operando by spectroscopic ellipsometry and Raman spectroscopy, both conducted during oxidation in potentiostatic step experiments. Oxide growth is initiated by jumping from a potential at which the surface is oxide-free to -0.1 V vs. Ag vertical bar AgCl vertical bar 3 M KCl (+0.11 V vs. standard hydrogen electrode, ...
ESTIMATING THE EFFECT OF CHIRALITY AND SIZE ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBES THROUGH FINITE ELEMENT MODELLING
Zuberi, Muhammad Jibran Shahzad; Esat, Volkan (2014-06-27)
Carbon nanotubes (CNTs) are considered to be one of the contemporary materials exhibiting superior mechanical, thermal and electrical properties. A new generation state-of-the-art composite material, carbon nanotube reinforced polymer (CNTRP), utilizes carbon nanotubes as the reinforcing fibre element. CNTRPs are highly promising composite materials possessing the potential to be used in various areas such as automotive, aerospace, defence, and energy sectors.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Sargın and S. P. Beckman, “A data-informatics method to quantitatively represent ternary eutectic microstructures,”
SCIENTIFIC REPORTS
, vol. 9, pp. 0–0, 2019, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96214.