MODELING OF THE HAWKMOTH WING AND ITS IMPLEMENTATION IN A FOUR-BAR FLAPPING WING MECHANISM

2022-2
Ökmen, Aytek Altuga
The main aim of this study is to accurately model the wing of a hawkmoth (Manduca sexta) to implement it in a flapping wing mechanism for a micro aerial vehicle (MAV). The wing is first modeled in ANSYS/SpaceClaim then the model is verified by performing modal analysis on the finite element model (FEM) of the wing in ANSYS/Mechanical. Grid refinement study is performed on the FEM. Results of the modal analysis of the modeled wing are compared to literature results and it is seen that both results are in good agreement. A simple planar four-bar mechanism is designed in the flexible multibody dynamics program ADAMS. The mechanism can perform a figure of eight shape when it is moving which mimics the flapping motion of the hawkmoth. FEM model of the wing is implemented to the mechanism as a flexible body and flapping simulations in vacuum conditions are conducted.

Suggestions

Modeling of the Hawkmoth Wing and its implementation in a flapping wing mechanism
Ökmen, Aytek Altuga; ARIKAN, KUTLUK BİLGE; Kurtuluş, Dilek Funda (2021-09-10)
Main aim of this study is to accurately model the wing of a hawkmoth (Manduca sexta) in order to implement it in a flapping wing mechanism for a micro aerial vehicle (MAV). The wing is first modeled in ANSYS/SpaceClaim then the model is verified by performing modal analysis on the finite element model (FEM) of the wing in ANSYS/Mechanical. Grid refinement study is performed on the FEM. Results of the modal analysis of the modeled wing is compared to literature results and it is seen that both results are in...
VERIFICATION OF A FINITE ELEMENT MODEL OF AN UNMANNED AERIAL VEHICLE WING TORQUE BOX VIA EXPERIMENTAL MODAL TESTING
Unlusoy, Levent; Şahin, Melin; Yaman, Yavuz (2012-07-04)
In this study, the detailed finite element model (FEM) of an unmanned aerial vehicle wing torque box was verified by the experimental modal testing. During the computational studies the free-free boundary conditions were used and the natural frequencies and mode-shapes of the structure were obtained by using the MSC Software. The results were then compared with the experimentally obtained resonance frequencies and mode-shapes. It was observed that the frequencies were in close agreement having an error with...
Numerical investigation of a Hawkmoth wing undergoing pure plunge motion in hover
Bektaş, Mürvet; Güler, Mehmet Ali; Kurtuluş, Dilek Funda (2019-09-20)
The aerodynamic phenomena of the flapping motion in hover mode is widely considered in micro air vehicle (MAV) applications. In this study, the aerodynamics of a three-dimensional rigid wing mimicked from the hawkmoth Manduca sexta is numerically investigated under pure plunge motion. The sinusoidal motion is provided with a user-defined function (UDF) to flap the wing, and the computational fluid dynamics (CFD) is used for the numerical analysis. This paper presents the effects of various parameters such a...
Steady-State CFD Analysis of 3D Bio-inspired Flapping Wing Models
Bektaş, Mürvet; Kurtuluş, Dilek Funda; Güler, Mehmet Ali (2018-07-11)
The aerodynamics of insects flying at low Reynolds numbers is considered for Micro Air Vehicles (MAV) designs. The aim of this study is to analyze different flapping wing models and to predict generated forces and vortices around the wings. The analyses are significant for understanding properties of flying animals like birds, insects and for improving MAVs more. For three insect species (namely, bumblebee, hawkmoth, and hummingbird), three dimensional (3D) wing models are numerically analyzed at different ...
Analysis of a UAV that can Hover and Fly Level
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (EDP Sciences; 2016-03-14)
In this study, an unmanned aerial vehicle (UAV) with level flight, vertical take-off and landing (VTOL) and mode-changing capability is analysed. The platform design combines both multirotor and fixed-wing (FW) conventional airplane structures and control surfaces; therefore, named as VTOL-FW. The aircraft is modelled using aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. The proposed method of control includes implementation of multirotor a...
Citation Formats
A. A. Ökmen, “MODELING OF THE HAWKMOTH WING AND ITS IMPLEMENTATION IN A FOUR-BAR FLAPPING WING MECHANISM,” M.S. - Master of Science, Middle East Technical University, 2022.