Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Greenhouse gas emissions from global cities under SSP/RCP scenarios, 1990 to 2100
Date
2022-03-01
Author
Gurney, Kevin R.
Kılkış, Şiir
Seto, Karen C.
Lwasa, Shuaib
Moran, Daniel
Riahi, Keywan
Keller, Meredith
Rayner, Peter
Luqman, Muhammed
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
295
views
0
downloads
Cite This
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.
Subject Keywords
Climate change
,
Climate neutrality
,
Emission scenarios
,
Emissions mitigation
,
Greenhouse gases
,
Urban emissions
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124177530&origin=inward
https://hdl.handle.net/11511/96453
Journal
Global Environmental Change
DOI
https://doi.org/10.1016/j.gloenvcha.2022.102478
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Sustainability Assessments of Urban Railway Systems: Case Study Evaluations in Turkey
YÜKSEL, MÜGE; Tanyer, Ali Murat; Pekeriçli, Mehmet Koray (Springer, 2019-01-01)
There are ongoing efforts to control global warming via reducing CO2 emissions, which are mostly based on human activities. Through life cycle assessment (LCA) carbon footprint (CFP) calculations provide a clear picture of embodied carbon (EC). In this study, the significance of EC estimation and reduction for railway projects are explored. The main motivation is having applicable sustainability strategies for railway systems in Turkey. Since there is no certification system, range or database, these effort...
Sustainability Assessments of Urban Railway Systems: Case Study Evaluations in Turkey
Yüksel, Müge; Tanyer, Ali Murat; Pekeriçli, Mehmet Koray (2019-09-12)
There are ongoing efforts to control global warming via reducing CO2 emissions, which are mostly based on human activities. Through life cycle assessment (LCA) carbon footprint (CFP) calculations provide a clear picture of embodied carbon (EC). In this study, the significance of EC estimation and reduction for railway projects are explored. The main motivation is having applicable sustainability strategies for railway systems in Turkey. Since there is no certification system, range or database, these effort...
Trend analysis of watershed-scale annual and seasonal precipitation in Northern California based on dynamically downscaled future climate projections
Ishida, K.; Ercan, Ali; Trinh, T.; Jang, S.; Kavvas, M. L.; Ohara, N.; Chen, Z. Q.; Kure, S.; Dib, A. (2020-03-01)
Impact of future climate change on watershed-scale precipitation was investigated over Northern California based on future climate projections by means of the dynamical downscaling approach. Thirteen different future climate projection realizations from two general circulation models (GCMs: ECHAM5 and CCSM3) based on four emission scenarios (SRES A1B, A1FI, A2, and B1) were dynamically downscaled to 9-km resolution grids over eight watersheds in Northern California for a period of 90 water years (2010-2100)...
Sustainable carbon constrained energy generation perspectives: Dataset
Çubukçu, Nilay; Tarı, İlker (2021-12-7)
There is a consensus that climate change, which is about to become a major disaster for humankind, is largely due to anthropogenic activities. Greenhouse gases (dominated by CO2) emissions play a dominant role there. Majority of the emissions results from energy consumption. Today, mitigating CO2 emissions consists one of the fundamental missions of the humankind. One such task is to reduce the global energy demand. Enhancing efficiency, recycling, promoting behavioral changes to reduce energy demandi...
Potential impacts of climate change on wind energy resources in Türkiye
Işık Çetin, İrem; Yücel, İsmail; Arı, İzzet; Department of Earth System Science (2023-3-02)
Increasing the use of renewable energy is crucial in reducing the adverse effects of climate change. However, climate change will also affect weather-dependent renewable energy resources. Therefore, this study aims to identify the effects of climate change on the wind energy resources in Türkiye, which is in the Mediterranean hotspot, in the next century by using recent climate projections (CMIP6) with two different scenarios. The study includes four different results for wind resources in Türkiye. First, t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. R. Gurney et al., “Greenhouse gas emissions from global cities under SSP/RCP scenarios, 1990 to 2100,”
Global Environmental Change
, vol. 73, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124177530&origin=inward.