Experimental Analysis and Multiscale Modeling of the Dynamics of a Fiber-Optic Coil

Download
2022-01-01
Kahveci, Oezkan
Gencoglu, Caner
Yalçınkaya, Tuncay
Fiber-optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and in the winding radius of the coil to meet system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, eventually leading to measurement errors. In order to eliminate the errors and to qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dynamic behavior of a quadrupole wound fiber-optic coil is investigated. First, pre-wound fiber-optic coils are tested with an impact modal test, where the mode shapes and natural frequencies are determined with structural data acquisition. For the modal analysis, a finite element (FE) model is developed where a representative volume element (RVE) analysis is also included to properly consider the influence of the microstructure. The experimental and numerical results are compared and validated. Moreover, an estimation model is proposed for a type of coil with different fiber lengths. Finally, the estimated coil set is produced and tested employing the same methodology in order to illustrate the capacity of the developed framework.
SENSORS

Suggestions

Dynamical analysis of the fiber optic coils through multiscale numerical modeling and modal tests
Kahveci, Özkan; Yalçınkaya, Tuncay; Department of Aerospace Engineering (2022-4-28)
Fiber optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and winding radius of coils to meet the system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, which eventually leads to measurement errors. In order to eliminate the errors and qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dynamic...
Estimation of Deterministic and Stochastic IMU Error Parameters
Unsal, Derya; Demirbaş, Kerim (2012-04-26)
Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors conta...
Design of a dual polarized low profile antenna for microwave brain imaging
Üçel, Kaan; Alatan, Lale; Department of Electrical and Electronics Engineering (2022-5-9)
In this thesis, a low profile, low cost, wide band (0.9-2GHz) dual linearly polarized printed dipole antenna is designed to be used in microwave brain imaging systems. Dual polarization feature offers superior data acquisition through polarization diversity for better image quality. Starting from a simple printed dipole, antenna structure is modified step by step to meet these design requirements. Since a conductive surface in close vicinity of the antenna affects antenna performance, in order to obtain uni...
Investigation of on-wafer TRL calibration accuracy dependence on transitions and probe positioning
Atasoy, H.I.; Unlu, M.; Topalli, K.; Istanbulluoglu, I.; Temocin, E.U.; Bayraktar, O.; Demir, Şimşek; Civi, O.; Koç, Seyit Sencer; Akın, Tayfun (2006-09-12)
This paper presents the effects of various transition types from the measurement plane to the reference plane in TRL calibration and probe positioning effects for on wafer measurements of CPW based devices. Fourteen different transition types, with direct, linear and exponential transitions, including 3 different variations of ground-signal-ground (GSG) spacing are examined. To observe the performance of the transitions, simple CPW transmission lines of different characteristic impedances are fabricated usi...
Experimental study on the velocity limits of magnetized rotating plasmas
Teodorescu, C.; Clary, R.; Ellis, R. F.; Hassam, A. B.; Lunsford, R.; Uzun Kaymak, İlker Ümit; Young, W. C. (AIP Publishing, 2008-04-01)
An experimental study on the physical limits of the rotation velocity of magnetized plasmas is presented. Experiments are performed in the Maryland Centrifugal Experiment (MCX) [R. F. Ellis , Phys. Plasmas 12, 055704 (2005)], a mirror magnetic field plasma rotating azimuthally. The externally applied parameters that control the plasma characteristics-applied voltage, external magnetic field, and fill pressure-are scanned across the entire available range of values. It is found that the plasma rotation veloc...
Citation Formats
O. Kahveci, C. Gencoglu, and T. Yalçınkaya, “Experimental Analysis and Multiscale Modeling of the Dynamics of a Fiber-Optic Coil,” SENSORS, vol. 22, no. 2, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96549.