Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental Analysis and Multiscale Modeling of the Dynamics of a Fiber-Optic Coil
Download
index.pdf
Date
2022-01-01
Author
Kahveci, Oezkan
Gencoglu, Caner
Yalçınkaya, Tuncay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
182
views
86
downloads
Cite This
Fiber-optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and in the winding radius of the coil to meet system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, eventually leading to measurement errors. In order to eliminate the errors and to qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dynamic behavior of a quadrupole wound fiber-optic coil is investigated. First, pre-wound fiber-optic coils are tested with an impact modal test, where the mode shapes and natural frequencies are determined with structural data acquisition. For the modal analysis, a finite element (FE) model is developed where a representative volume element (RVE) analysis is also included to properly consider the influence of the microstructure. The experimental and numerical results are compared and validated. Moreover, an estimation model is proposed for a type of coil with different fiber lengths. Finally, the estimated coil set is produced and tested employing the same methodology in order to illustrate the capacity of the developed framework.
Subject Keywords
fiber
,
fiber-optic gyroscope
,
modal test
,
modal analysis
,
representative volume element
,
fiber-optic coil
,
finite element method
,
homogenization
,
OPTIC GYROSCOPE
,
COMPOSITE
,
HOMOGENIZATION
,
PERFORMANCE
,
ADHESIVE
,
ERROR
URI
https://hdl.handle.net/11511/96549
Journal
SENSORS
DOI
https://doi.org/10.3390/s22020582
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Dynamical analysis of the fiber optic coils through multiscale numerical modeling and modal tests
Kahveci, Özkan; Yalçınkaya, Tuncay; Department of Aerospace Engineering (2022-4-28)
Fiber optic gyroscopes (FOGs) are common rotation measurement devices in aerospace applications. They have a wide range of diversity in length and winding radius of coils to meet the system requirements. Every dimensional parameter in the coil influences the dynamic response of the system, which eventually leads to measurement errors. In order to eliminate the errors and qualify the system, after the design and production stages, a deep and comprehensive testing procedure follows. In this study, the dynamic...
Estimation of Deterministic and Stochastic IMU Error Parameters
Unsal, Derya; Demirbaş, Kerim (2012-04-26)
Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors conta...
Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture
Tay, W. B.; de Baar, J. H. S.; Perçin, Mustafa; Deng, S.; van Oudheusden, B. W. (American Institute of Aeronautics and Astronautics (AIAA), 2018-8)
Three-dimensional numerical simulations of a four-wing flapping micro aerial vehicle (FMAV) with actual experimentally captured wing membrane kinematics have been performed using an immersed boundary method Navier-Stokes finite volume solver. To successfully simulate the clap and fling motion involving the wing intersection, the numerical solver has been specifically modified to use a newly improved interpolation template searching algorithm to prevent divergence. Reasonable agreement was found between the ...
COMPARATIVE STRUCTURAL OPTIMIZATION STUDY OF COMPOSITE AND ALUMINUM HORIZONTAL TAIL PLANE OF A HELICOPTER
Arpacıoğlu, Bertan; Kayran, Altan (2019-11-11)
This work presents structural optimization studies of aluminum and composite material horizontal tail plane of a helicopter by using MSC. NASTRAN SOL200 optimization capabilities. Structural design process starts from conceptual design phase, and structural layout design is performed by using CATIA. In the preliminary design phase, study focuses on the minimum weight optimization with multiple design variables and similar constraints for both materials. Aerodynamic load calculation is performed using ANSYS ...
Assessment and improvement of elementary force computations for cold forward rod extrusion
Ocal, M; Egemen, N; Tekkaya, AE (2005-06-01)
Two commonly used analytical force computation methods for cold forward rod extrusion are evaluated by means of precise finite element computations. The upperbound model by Avitzur based on the spherical velocity field and the model by Siebel based on a quasi-upper-bound solution are considered. It has been found that the pure deformation forces obtained by summing the ideal force and shear force terms deviate between +25% and -20% from the finite element solutions. Larger deviations, however, occur for the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Kahveci, C. Gencoglu, and T. Yalçınkaya, “Experimental Analysis and Multiscale Modeling of the Dynamics of a Fiber-Optic Coil,”
SENSORS
, vol. 22, no. 2, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96549.