Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Diversity-multiplexing tradeoff in cooperative wireless systems
Date
2006-01-01
Author
Yüksel Turgut, Ayşe Melda
Erkip, Elza
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
94
views
0
downloads
Cite This
We first examine a system with a single source-destination pair and two relays, each node with a single antenna, and explore whether this virtual multi-input multi-output (MIMO) system can mimic a physical MIMO in terms of diversity-multiplexing tradeoff (DMT). We show that even under the idealistic assumption of full-duplex relays and a clustered network, the relay system can never fully mimic a real MIMO DMT, it is multiplexing gain limited. The limitation comes from the fact that source and destination are connected to relays with finite capacity links. We provide communication strategies that achieve the best DMT of this relay system. We extend our work to cover cooperative systems with multiple sources and multiple destinations and show that the same limitation is still in effect. Our results suggest that while cooperative relaying is able to provide high spatial diversity for low multiplexing gains, it can never mimic a physical MIMO for large multiplexing gains.
URI
https://hdl.handle.net/11511/96571
DOI
https://doi.org/10.1109/ciss.2006.286623
Conference Name
40th Annual Conference on Information Sciences and Systems (CISS)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Cooperative Multiple-Access in Fading Relay Channels
Yılmaz, Ayşen (2006-06-15)
Virtual antenna arrays can be constructed via relaying even in the case that there is insufficient physical space or other resources for multiple antennae on wireless nodes. When there is a multiple access scenario, relaying offers a variety of ways to establish communication between source and destination nodes. We will compare a scheme based on space division multiple access to previously studied time division based ones. We observe that space division improves especially the ergodic capacity.
Diversity-multiplexing tradeoff in half-duplex relay systems
Yüksel Turgut, Ayşe Melda; Erkip, Elza (2007-01-01)
We study the multiple antenna half-duplex relay channel from the diversity-multiplexing tradeoff (DMT) perspective. We find performance upper bounds and show that compress-and-forward (CF) protocol achieves the upper bound. We argue that although it is hard to find the exact DMT expressions for decode-and-forward (DF) type protocols, they would be suboptimal in the multiple antenna case. We also study the multiple-access relay channel (MARC), and evaluate how CF works in this system. Our results show that C...
Diversity-multiplexing tradeoff in multiple-antenna relay systems
Yüksel Turgut, Ayşe Melda; Erkip, Elza (2006-01-01)
We study the diversity-multiplexing tradeoff (DMT) for the full-duplex relay channel when the source and the destination have multiple antennas, and the relay has I or more. We find DMT upper bounds and investigate the achievable performance of decode-and-forward (DF), partial decode-and-forward (PDF), and compress-and-forward (CF) protocols. We study the effect of increased degrees of freedom in the direct link and the source-relay channel when multiple antennas are introduced. Our results suggest that whi...
Multi-Point Single-Antenna Sensing Enabled by Wireless Nested Split-Ring Resonator Sensors
Ozbey, Burak; ERTÜRK, VAKUR BEHÇET; Kurç, Özgür; ALTINTAŞ, AYHAN; DEMİR, Hilmi Volkan (2016-11-01)
In this paper, simultaneous multi-point wireless sensing is proposed and demonstrated via multiple sensors in nested split-ring resonator (NSRR) geometry coupled to a single illuminator antenna. In this passive multi-point sensing system, each probe in the sensor array is assigned a non-overlapping spectral interval for frequency shift in response to local mechanical loading around a unique operating resonance frequency in the band of the antenna. Here, it is shown that the antenna is capable of capturing t...
Computational analysis of network activity and spatial reach of sharp wave-ripples
Canakci, Sadullah; Toy, Muhammed Faruk; Inci, Ahmet Fatih; Liu, Xin; Kuzum, Duygu (Public Library of Science (PLoS), 2017-9-15)
Network oscillations of different frequencies, durations and amplitudes are hypothesized to coordinate information processing and transfer across brain areas. Among these oscillations, hippocampal sharp wave-ripple complexes (SPW-Rs) are one of the most prominent. SPW-Rs occurring in the hippocampus are suggested to play essential roles in memory consolidation as well as information transfer to the neocortex. To-date, most of the knowledge about SPW-Rs comes from experimental studies averaging responses fro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. M. Yüksel Turgut and E. Erkip, “Diversity-multiplexing tradeoff in cooperative wireless systems,” presented at the 40th Annual Conference on Information Sciences and Systems (CISS), Princes Town, Trinidad Ve Tobago, 2006, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96571.