Multi-Point Single-Antenna Sensing Enabled by Wireless Nested Split-Ring Resonator Sensors

Download
2016-11-01
Ozbey, Burak
ERTÜRK, VAKUR BEHÇET
Kurç, Özgür
ALTINTAŞ, AYHAN
DEMİR, Hilmi Volkan
In this paper, simultaneous multi-point wireless sensing is proposed and demonstrated via multiple sensors in nested split-ring resonator (NSRR) geometry coupled to a single illuminator antenna. In this passive multi-point sensing system, each probe in the sensor array is assigned a non-overlapping spectral interval for frequency shift in response to local mechanical loading around a unique operating resonance frequency in the band of the antenna. Here, it is shown that the antenna is capable of capturing the responses from all probes in a single frequency sweep. Furthermore, the inter-coupling between the array elements and the effect of antenna illumination on the coupling are experimentally investigated in a systematic way. In addition, as a proof-of-concept real-life application in structural health monitoring, two NSRR sensors are located inside a concrete beam to monitor the strain forming on reinforcing bars, and this dual-probe system is demonstrated to record strain simultaneously via both of the embedded probes.
IEEE SENSORS JOURNAL

Suggestions

Wireless Sensing in Complex Electromagnetic Media: Construction Materials and Structural Monitoring
Ozbey, Burak; DEMİR, Hilmi Volkan; Kurç, Özgür; ERTÜRK, VAKUR BEHÇET; ALTINTAŞ, AYHAN (2015-10-01)
In this paper, wireless sensing in the presence of complex electromagnetic media created by combinations of reinforcing bars and concrete is investigated. The wireless displacement sensing system, primarily designed for use in structural health monitoring (SHM), is composed of a comb-like nested split-ring resonator (NSRR) probe and a transceiver antenna. Although each complex medium scenario is predicted to have a detrimental effect on sensing in principle, it is demonstrated that the proposed sensor geome...
Wearable battery-less wireless sensor network with electromagnetic energy harvesting system
Chamanian, Salar; Ulusan, Hasan; Zorlu, Ozge; Baghaee, Sajjad; Uysal, Elif; Külah, Haluk (2016-10-01)
This paper presents a battery-less wireless sensor network (WSN) equipped with electromagnetic (EM) energy harvesters and sensor nodes with adjustable time-interval based on stored the energy. A wearable EM energy harvesting system is developed and optimized to power-up a typical wireless sensor mote from body motion. This is realized through characterization of the body motion and design of a compact EM energy harvester according to vibration frequencies generated during human running and walking. The harv...
Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring
Ozbey, Burak; Unal, Emre; Ertugrul, Hatice; Kurç, Özgür; Puttlitz, Christian M.; ERTÜRK, VAKUR BEHÇET; ALTINTAŞ, AYHAN; DEMİR, Hilmi Volkan (2014-01-01)
We propose and demonstrate a wireless, passive, metamaterial-based sensor that allows for remotely monitoring submicron displacements over millimeter ranges. The sensor comprises a probe made of multiple nested split ring resonators (NSRRs) in a double-comb architecture coupled to an external antenna in its near-field. In operation, the sensor detects displacement of a structure onto which the NSRR probe is attached by telemetrically tracking the shift in its local frequency peaks. Owing to the NSRR's near-...
Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor
Ozbey, Burak; DEMİR, Hilmi Volkan; Kurç, Özgür; ERTÜRK, VAKUR BEHÇET; ALTINTAŞ, AYHAN (2014-10-01)
We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole ...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Citation Formats
B. Ozbey, V. B. ERTÜRK, Ö. Kurç, A. ALTINTAŞ, and H. V. DEMİR, “Multi-Point Single-Antenna Sensing Enabled by Wireless Nested Split-Ring Resonator Sensors,” IEEE SENSORS JOURNAL, pp. 7744–7752, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48558.