Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multi-Point Single-Antenna Sensing Enabled by Wireless Nested Split-Ring Resonator Sensors
Download
index.pdf
Date
2016-11-01
Author
Ozbey, Burak
ERTÜRK, VAKUR BEHÇET
Kurç, Özgür
ALTINTAŞ, AYHAN
DEMİR, Hilmi Volkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
255
views
84
downloads
Cite This
In this paper, simultaneous multi-point wireless sensing is proposed and demonstrated via multiple sensors in nested split-ring resonator (NSRR) geometry coupled to a single illuminator antenna. In this passive multi-point sensing system, each probe in the sensor array is assigned a non-overlapping spectral interval for frequency shift in response to local mechanical loading around a unique operating resonance frequency in the band of the antenna. Here, it is shown that the antenna is capable of capturing the responses from all probes in a single frequency sweep. Furthermore, the inter-coupling between the array elements and the effect of antenna illumination on the coupling are experimentally investigated in a systematic way. In addition, as a proof-of-concept real-life application in structural health monitoring, two NSRR sensors are located inside a concrete beam to monitor the strain forming on reinforcing bars, and this dual-probe system is demonstrated to record strain simultaneously via both of the embedded probes.
Subject Keywords
Wireless passive sensor
,
Displacement sensor
,
Strain sensor
,
Nested split ring resonator (NSRR)
,
Multi-point sensing
,
Multiple sensors
,
Structural health monitoring (SHM)
URI
https://hdl.handle.net/11511/48558
Journal
IEEE SENSORS JOURNAL
DOI
https://doi.org/10.1109/jsen.2016.2604020
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Wireless Sensing in Complex Electromagnetic Media: Construction Materials and Structural Monitoring
Ozbey, Burak; DEMİR, Hilmi Volkan; Kurç, Özgür; ERTÜRK, VAKUR BEHÇET; ALTINTAŞ, AYHAN (2015-10-01)
In this paper, wireless sensing in the presence of complex electromagnetic media created by combinations of reinforcing bars and concrete is investigated. The wireless displacement sensing system, primarily designed for use in structural health monitoring (SHM), is composed of a comb-like nested split-ring resonator (NSRR) probe and a transceiver antenna. Although each complex medium scenario is predicted to have a detrimental effect on sensing in principle, it is demonstrated that the proposed sensor geome...
Wearable battery-less wireless sensor network with electromagnetic energy harvesting system
Chamanian, Salar; Ulusan, Hasan; Zorlu, Ozge; Baghaee, Sajjad; Uysal, Elif; Külah, Haluk (2016-10-01)
This paper presents a battery-less wireless sensor network (WSN) equipped with electromagnetic (EM) energy harvesters and sensor nodes with adjustable time-interval based on stored the energy. A wearable EM energy harvesting system is developed and optimized to power-up a typical wireless sensor mote from body motion. This is realized through characterization of the body motion and design of a compact EM energy harvester according to vibration frequencies generated during human running and walking. The harv...
Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring
Ozbey, Burak; Unal, Emre; Ertugrul, Hatice; Kurç, Özgür; Puttlitz, Christian M.; ERTÜRK, VAKUR BEHÇET; ALTINTAŞ, AYHAN; DEMİR, Hilmi Volkan (2014-01-01)
We propose and demonstrate a wireless, passive, metamaterial-based sensor that allows for remotely monitoring submicron displacements over millimeter ranges. The sensor comprises a probe made of multiple nested split ring resonators (NSRRs) in a double-comb architecture coupled to an external antenna in its near-field. In operation, the sensor detects displacement of a structure onto which the NSRR probe is attached by telemetrically tracking the shift in its local frequency peaks. Owing to the NSRR's near-...
Robot end-effector based sensor integration for tracking moving parts
Konukseven, Erhan İlhan (2000-08-31)
This paper presents a cost-efficient end-effector based infrared proximity sensor integration system and the implementation of fuzzy-logic control algorithm.
Communication Coverage in Wireless Passive Sensor Networks
Bereketli, Alper; Akan, Ozgur B. (2009-02-01)
System lifetime of wireless sensor networks (WSN) is inversely proportional to the energy consumed by critically energy-constrained sensor nodes during RF transmission. In that regard, modulated backscattering (MB) is a promising design choice, in which sensor nodes send their data just by switching their antenna impedance and reflecting the incident signal coming from an RF source. Hence, wireless passive sensor networks (WPSN) designed to operate using MB do not have the lifetime constraints of convention...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Ozbey, V. B. ERTÜRK, Ö. Kurç, A. ALTINTAŞ, and H. V. DEMİR, “Multi-Point Single-Antenna Sensing Enabled by Wireless Nested Split-Ring Resonator Sensors,”
IEEE SENSORS JOURNAL
, pp. 7744–7752, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48558.