Diversity-multiplexing tradeoff for the multiple-antenna wire-tap channel

Download
2008-01-01
In this paper the fading multiple antenna (MIMO) wire-tap channel is investigated. The secret diversity gain and the secret multiplexing gain are defined. Using these definitions, the secret diversity-multiplexing tradeoff (DMT) is calculated analytically when the source node does not have transmitter side channel state information (CSI). It is shown that the wire-tapper steals degrees of freedom from the source-destination channel, and the secret DMT depends on the remaining degrees of freedom. When CSI is available at the source, unlike the case when there are no security constraints, transmitter CSI changes the secret DMT significantly.
42nd Annual Conference on Information Sciences and Systems

Suggestions

Diversity-Multiplexing Tradeoff for the Multiple-Antenna Wire-tap Channel
Yüksel Turgut, Ayşe Melda; Erkip, Elza (2011-03-01)
In this paper the fading multiple antenna (MIMO) wire-tap channel is investigated under short term power constraints. The secret diversity gain and the secret multiplexing gain are defined. Using these definitions, the secret diversity-multiplexing tradeoff (DMT) is calculated analytically for no transmitter side channel state information (CSI) and for full CSI. When there is no CSI at the transmitter, under the assumption of Gaussian codebooks, it is shown that the eavesdropper steals both transmitter and ...
Diversity-multiplexing tradeoff for MIMO wire-tap channels with CSIT
Yüksel Turgut, Ayşe Melda; Erkip, Elza (2010-07-15)
In this paper fading multiple-antenna (MIMO) wiretap channels are investigated under short term power constraints. The secret diversity- multiplexing tradeoff (DMT) is calculated analytically, when the destination and the eavesdropper have receiver side channel state information (CSI) and the source has transmitter side CSI (CSIT). It is shown that the eavesdropper steals transmitter antennas and the secret DMT depends on the effective number of antennas left. This is in contrast to the no CSIT case, where ...
Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback
Sahai, Achaleshwar; Aggarwal, Vaneet; Yüksel Turgut, Ayşe Melda; Sabharwal, Ashutosh (2010-01-01)
In a two-user interference channel, there are four possible feedback paths - two from each receiver to the transmitters. This leads to 16 possible models of feedback. In this paper, we derive the sum capacity of two user deterministic interference channel for all sixteen cases. We find that whenever any of the direct link feedback from a receiver to its own transmitter is present, the sum-capacity is the same as when all four feedback links are present. Further when no direct link feedback is present, the s...
Dynamic analysis of CMUTs in different regimes of operation
Bayram, Barış; Ergun, AS; Yaralioglu, GG; Khuri-Yakub, BT (2003-01-01)
This paper reports on dynamic analysis of an immersed single capacitive micromachined ultrasonic transducer (CMUT) cell transmitting. A water loaded 24 mum circular silicon membrane of a transducer was modeled. The calculated collapse and snapback voltages were 80 V and 50 V, respectively. The resonance frequency, output pressure and nonlinearity of the CMUT in three regimes of operation were determined. These regimes were: a) the conventional regime in which the membrane does not make contact with the subs...
Channel phase and data estimation in slowly fading frequency nonselective channels
Zeydan, Engin; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2006)
In coherent receivers, the effect of the multipath fading channel on the transmitted signal must be estimated to recover the transmitted data. In this thesis, the channel phase and data estimation problems are investigated in a transmitted data sequence when the channel is modeled as slowly fading, frequency non-selective channel. Channel phase estimation in a transmitted data sequence is investigated and data estimation is obtained in a symbol-by-symbol MAP receiver that is designed for minimum symbol erro...
Citation Formats
A. M. Yüksel Turgut and E. Erkip, “Diversity-multiplexing tradeoff for the multiple-antenna wire-tap channel,” presented at the 42nd Annual Conference on Information Sciences and Systems, Princes Town, Trinidad Ve Tobago, 2008, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96668.