Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental investigation of flow over a backward facing step
Download
047428.pdf
Date
1995
Author
Karatekin, Özgür
Metadata
Show full item record
Item Usage Stats
77
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/9667
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental investigation of flow separation from rigid walls with salient edges
Akçalı, Fikri; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2004)
This thesis presents the experimental results on the formation of flow separation from a rigid wall with a salient edge. In the case of automotive vehicles or aircrafts with rear cargo compartment doors, such salient edges are at the origin of separated wake flows resulting in increased drag and other disturbing effects. Recent studies of Ahmed et al. (1984) on simplified geometries showed the strong influence of the slant angle on the flow separations. In this study, the geometry is further simplified to e...
Experimental study of wave characteristics on a thin layer of de/anti-icing fluid
Özgen, Serkan; Sarma, GSR (2002-10-01)
Several series of experiments were conducted in order to investigate wave formation and wave characteristics on a thin layer of de/anti-icing fluid using a nonintrusive technique. The configuration consists of a thin layer of de/anti-icing fluid deposited on the lower wall of the wind tunnel section, sheared by a turbulent airflow. Beyond a critical value of the wind speed, two-dimensional surface waves could be observed. The characteristics of these waves like the wavelength and the wave speed could be mea...
EXPERIMENTAL INVESTIGATION OF THE AXIAL IMPREGNATION OF ORIENTED FIBER-BUNDLES BY CAPILLARY FORCES
BAYRAMLI, E; POWELL, RL (1991-05-01)
Capillary impregnation of a viscous liquid into carbon fiber bundles is investigated experimentally. Axial impregnation is examined in which flow occurs primarily parallel to the fibers' axes. For silicone oils, as well as for a curing epoxy system, the kinetics of axial impregnation follow closely h-alpha-t1/2, where h is the average displacement of the advancing front and t is the time of impregnation. The impregnation rates are higher than those predicted by theoretical models based upon simple geomet...
Experimental investigation of subcooled nucleate flow boiling of water
Tulum, Servet; Yeşin, Orhan; Department of Mechanical Engineering (1987)
Experimental investigation of the effects of tip geometry on the flow and loss characteristics in a linear turbine cascade
Alican, Ozan; Uzol, Oğuz; Department of Aerospace Engineering (2017)
In gas turbines, there are a number of factors causing efficiency decrease. When internal flow in turbomachines is considered, flow vortices are one of those factors. This study aims to investigate the main mechanisms behind the efficiency losses occurring due to Tip Leakage Vortex (TLV) in gas turbine rotor blades. Additionally, according to these mechanisms, two squealer tip geometries were applied to the turbine blades and the improvements were reported. This work is the experimental branch of an optimum...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Karatekin, “Experimental investigation of flow over a backward facing step,” Middle East Technical University, 1995.