Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
DEVELOPMENT OF BORIDES/BORATES FOR ENERGY STORAGE DEVICES
Download
Doruk Bahtiyar- Thesis.pdf
Date
2022-9
Author
Bahtiyar, Doruk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
417
views
223
downloads
Cite This
For many years, materials in the form of metal sulfides, oxides, phosphates, and titanates have been developed as cathode and anode active materials to be used in energy storage devices. Borides and borates, recently, attracted the attention of researchers in this field. In this study, for the development of a new class of materials for energy storage applications, synthesis and characterization of metal (Fe, Mo, Mn, and V) borides and (Mn, and Y)borates were carried out. The obtained materials were tested for their activity in lithium-ion batteries. Chemical and structural analysis were performed using X-ray diffraction spectroscopy, and scanning electron microscopy. Electrochemical characterization of the cells showed that manganase boride has the highest initial specific capacity of 576.80 mAh/g while yittrium borate has a specific capacity of 78.54 mAh/g as lowest at 20 mA/g current density. After fifty cycles at 20 mA/g, capacity decrease was observed for all samples, capacity retention of VB was calculated as 85.37 % which was the highest among all samples that are synthesized during this study. Furthermore, cyclic voltammetry was applied to understand charge-discharge mechanism of samples. It was noted that all samples has SEı formation around 0.74 V.
Subject Keywords
Boride
,
Borate
,
Li-ion battery
,
Solid-state reaction synthesis
URI
https://hdl.handle.net/11511/98739
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development andcharacterization of activated carbon / transition metal phosphide composites for electrochemical capacitors
Köse, Kadir Özgün; Aydınol, Mehmet Kadri (null; 2019-09-11)
Electrochemical capacitors are the energy storage devices based mainly on electrical double layer formation. Their power densities are exceptionally high; however, their energy densities are characteristically low to compete various types of batteries in market. Therefore, there have been great amount of studies to enhance electrochemical capacitors’ energy density. Utilization of inorganic materials such as transition metal oxides and/or phosphides is one of the most common strategies to increase energy de...
Development and characterization of high power density cathode materials for lithium-ion batteries
Doğu, Şafak; Aydınol, Mehmet Kadri; Evis, Zafer; Department of Micro and Nanotechnology (2015)
In this thesis, facile and cost efficient aqua based synthesis method is developed to synthesize power dense and fast rechargeable LiFePO4 cathode materials. In order to obtain nano sized crystal morphology, nucleation controlled techniques were studied on precursor synthesis. These techniques are freeze (cryogenic) drying with co-precipitation and ultrasound assisted sub-sequential precipitation with vacuum drying at low temperatures (<350 K). In co-precipitation with freeze drying synthesis, star-like pla...
Nanomaterial-Enhanced All-Solid Flexible Zinc-Carbon Batteries
Hiralal, Pritesh; Imaizumi, Shinji; Ünalan, Hüsnü Emrah; Matsumoto, Hidetoshi; Minagawa, Mie; Rouvala, Markku; Tanioka, Akihiko; Amaratunga, Gehan A. J. (2010-05-01)
Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The cathode layer consists of manganese oxide particles combined with single-walled carbon nanotubes for improved conductivity. A polyethylene oxide layer containing titanium oxide nanoparticles forms the electrolyte laye...
Investigation of Self-Excited Ultrahigh Speed Induction Generators for Distributed Generation Systems
Jardan, Rafael K.; Varga, Zoltan; Nagy, Istvan (2011-09-10)
Application of ultra high speed induction generators (IG) in a system developed for utilization of renewable and waste energies that can be applied in Distributed Generation System is presented. The energy conversion is made by a turbine-generator set. For the electromechanical energy conversion application of special high speed induction generators has been studied and described in the paper. The design and analysis of the system are relied on computer simulation techniques verified by test results.
DEVELOPMENT OF POLYMER MATRIX COMPOSITES WITH TUNABLE DIELECTRIC PROPERTIES
Özkaragöz, Nadire Nazlı; Dericioğlu, Arcan Fehmi; Department of Metallurgical and Materials Engineering (2022-2-08)
Ferroelectric materials are used in different applications because of their superior electrical and dielectric properties. Ferroelectric materials are polarized when an electrical field is applied to the material. This spontaneous polarization continues even if an electrical field is removed. BST (Barium Strontium Titanate) is one of the attractive ferroelectric materials which has a high dielectric constant and low dielectric loss tangent (tanδ). High dielectric constant and low loss tangent are necessary ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Bahtiyar, “DEVELOPMENT OF BORIDES/BORATES FOR ENERGY STORAGE DEVICES,” M.S. - Master of Science, Middle East Technical University, 2022.