Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Almost periodic solutions of recurrently structured impulsive neural networks
Download
10460770.pdf
Date
2022-3-28
Author
Top, Gülbahar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
301
views
193
downloads
Cite This
This thesis aims to conduct detailed and precise neural networks research with impulses at nonprescribed moments in terms of periodic and almost periodic solutions. Most of the actions in nature modeled by neural networks involve repetitions. Hence periodic and almost periodic motions become crucial. So in this thesis, the existence, uniqueness, and stability of the periodic and almost periodic motion are served for the neural networks with prescribed and nonprescribed impacts. This impulsive system is a neural network with innovative structured impacts that perfectly match the rates. If one regards the impulses as limits of their continuous counterparts, this makes sense for the application. Thus, the novel system also considers the neural networks' nature in the impulsive part since the sudden noises or impact disturbances can affect the rates or activation functions. New conditions on the coefficients have been designed to be more specific and detailed. The constructive stability conditions are delivered directly related to the system's coefficients. A detailed approach is performed to the systems with variable moments of impulses. For the research, the method of B-equivalence is employed, and the relationship between the original and B-equivalent systems was explicitly established and provided. Furthermore, because the impulsive component of the system is inherent to the neural network, the B-equivalent system also matches the original structure in terms of differential and impulsive parts. One of the novel aspects of this work is that the possibility of negative capacitance in a neurological system is not neglected. Together with the elimination of the capacitance's positivity requirement, the new structure allows for a more thorough study under optimal conditions. The probability of negative capacitance emphasizes the need for impulses to maintain stability.
Subject Keywords
Asymptotic stability
,
B-equivalence method
,
Discontinuous almost periodic motions
,
Neural networks with negative/positive capacitance
,
Recurrently structured impacts
,
Recurrent impulsive neural networks
URI
https://hdl.handle.net/11511/96807
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Almost Periodic Solutions of Recurrent Neural Networks with State-Dependent and Structured Impulses
Akhmet, Marat; Erim, Gülbahar (2023-01-01)
The subject of the present paper is recurrent neural networks with variable impulsive moments. The impact activation functions are specified such that the structure for the jump equations are in full accordance with that one for the differential equation. The system studied in this paper covers the works done before, not only because the impacts have recurrent form, but also impulses are not state-dependent. The conditions for existence and uniqueness of asymptotically stable discontinuous almost periodic s...
IMPULSIVE SICNNS WITH CHAOTIC POSTSYNAPTIC CURRENTS
Fen, Mehmet Onur; Akhmet, Marat (2016-06-01)
In the present study, we investigate the dynamics of shunting inhibitory cellular neural networks (SICNNs) with impulsive effects. We give a mathematical description of the chaos for the multidimensional dynamics of impulsive SICNNs, and prove its existence rigorously by taking advantage of the external inputs. The Li-Yorke definition of chaos is used in our theoretical discussions. In the considered model, the impacts satisfy the cell and shunting principles. This enriches the applications of SICNNs and ma...
Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays
Sayli, Mustafa; YILMAZ, ENES (2015-08-01)
In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence...
Artificial-neural-network prediction of hexagonal lattice parameters for non-stoichiometric apatites
Kockan, Umit; Ozturk, Fahrettin; Evis, Zafer (2014-01-01)
In this study, hexagonal lattice parameters (a and c) and unit-cell volumes of non-stoichiometric apatites of M-10(TO4)(6)X-2 are predicted from their ionic radii with artificial neural networks. A multilayer-perceptron network is used for training. The results indicate that the Bayesian regularization method with four neurons in the hidden layer with a tansig activation function and one neuron in the output layer with a purelin function gives the best results. It is found that the errors for the predicted ...
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Top, “Almost periodic solutions of recurrently structured impulsive neural networks,” Ph.D. - Doctoral Program, Middle East Technical University, 2022.