Yapay Sinir Ağları ile Sınıf Mekanlarında Performans Tahmini

Download
2021-06-29
Educational facilities account for approximately 12% of the energy consumed by buildings in the US and UK. Classrooms should provide their occupants' satisfactory indoor environments as indoor conditions play a determinant role in the performance, productivity, attendance, and health of students and teachers. Indoor air quality and thermal comfort are two major determinants of healthy classrooms. Generally, classrooms operate at full capacity, leading to severe indoor overheating degrees (IOD) and high carbon dioxide (CO2) concentrations if not adequately ventilated. To assess classroom design alternatives in the design development phase and retrofit scenarios, building energy simulation is a widely used method to estimate performance indicators. However, consideration of a high number of design alternatives increases computational cost and requires tedious modeling efforts. Research in building performance predictions with machine learning methods gained increasing interest in recent years. Artificial neural networks (ANNs) are reported to yield satisfactory performance in the prediction of non-linear patterns of building performance. This study presents a data-driven framework to estimate heating energy demand, IOD, and CO2 concentration of naturally ventilated classrooms with ANNs. Five input variables are selected to predict specified performance indicators. 200 classrooms with varying orientations, values of shape factor, glazing area, occupant density, and outdoor surface area are simulated. The ANNs are trained with a subset of EnergyPlus simulation results. Prediction models for three performance indicators are individually built, and prediction performances are evaluated. While regression coefficients range between 0.986 and 0.993, the average root mean square error calculated is between %2 and 9%, implying high predictive capacity.
Mimarlıkta Sayısal Tasarım Sempozyumu

Suggestions

The effect of sun spaces on temperature patterns within buildings: two case studies on the METU campus
Kırmızı, Hacer; Elias Özkan, Soofia Tahira; Department of Building Science in Architecture (2009)
The aim of this study was to investigate the passive and active parameters affecting energy efficiency of two office buildings with sun spaces, namely the MATPUM Building and the Solar Building on the Middle East Technical University (METU) Campus, Ankara and the effect of sun spaces on temperature patterns within mentioned buildings. Both buildings were oriented in the same direction, namely south. However, the location and the type of the sunspaces differed from each other. The sun space in the MATPUM Bui...
A data-driven approach for predicting solar energy potential of buildings in urban fabric
Duran, Ayça; Gürsel Dino, İpek; Department of Architecture (2022-7)
Energy-efficient buildings that use clean and sustainable energy sources are urgently needed to reduce the environmental impact of buildings and mitigate climate change in cities. Buildings have great potential in harvesting solar energy by their solar exposure capacity. Developments in PV technologies also encourage the integration of PV systems into architectural applications. However, urban contexts can limit solar energy generation capacity of buildings by shading building envelopes and reducing availab...
Parametric analysis of BIM-based building energy performance for supporting multi-objective optimization
Can, Esra; Akçamete Güngör, Aslı; Department of Civil Engineering (2022-5-11)
Building energy efficiency comes into prominence as buildings constitute a significant portion of world energy consumption and CO2 emissions. To achieve energy-efficient buildings, energy performance assessments should be conducted meticulously, yet it is difficult to comprehensively estimate the buildings’ energy consumption since energy performance assessments are complex multi-criteria problems that are affected by many factors such as building orientation, envelope design, climatic conditions, daylight ...
Arayüz Dönüşümü: Gelecekteki İnsan-Bina Etkileşimleri
Topak, Fatih; Pekeriçli, Mehmet Koray (2021-01-01)
Binalar, dünyadaki toplam enerji kullanımının yaklaşık %40'ından sorumludur ve bu oran, araştırmacıları yapı sistemlerinin işletilmesi ve kullanılması için yeni yollar üzerinde çalışmaya iten ciddi çevresel kaygılara yol açmaktadır. Akıllı binaların birçok yenilikçi özelliğe sahip son teknoloji ürünleriyle donatılı olacağı değerlendirildiğinde, akıllı binaların insanlarla arasındaki etkileşimlerin geleneksel binalardan farklı olacağı öngörülmektedir. Uzun yıllar boyunca, basit mantık ve fiziksel ara yüzleri...
An investigation into the age-based thermal energy balance of occupied classrooms in primary schools
Taner, Özün; Düzgüneş, Arda; Department of Building Science in Architecture (2008)
The effect of indoor heat gain from occupants as a bio-thermal source was hypothetically assessed in terms of its contribution to overall heating requirements during such occupancy and hence to potential energy savings. The spaces considered were classrooms in a sample of 6 public co-educational primary schools located within the city limits of Ankara built after 1998, the date when compulsory primary education was integrated to encompass grades 1 through 8 for ages 6 to 14, respectively. Being so, this all...
Citation Formats
A. Duran and İ. Gürsel Dino, “Yapay Sinir Ağları ile Sınıf Mekanlarında Performans Tahmini,” presented at the Mimarlıkta Sayısal Tasarım Sempozyumu, 2021, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97303.