Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Temperature-tuned optical bandgap of Al-doped ZnO spin coated nanostructured thin films
Date
2022-08-15
Author
Isik, M.
Hasanlı, Nızamı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
117
views
0
downloads
Cite This
© 2022 Elsevier B.V.Al-doped ZnO (AZO) nanostructured thin films were produced by spin coating of AZO ink. The structural characteristics were determined by x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD plot showed well-defined and intensive diffraction peaks belonging to hexagonal crystal structure. AZO thin films were observed in the form of nanostructure with size varying generally between 20 and 30 nm in the SEM image. The room temperature bandgap energies of undoped and Al-doped ZnO nanostructured films were obtained as 3.32(7) and 3.35(3) eV, respectively. Temperature-tuned bandgap energy characteristics of AZO films were revealed applying transmission experiments by varying the sample temperature. The temperature-bandgap energy dependency was studied by Varshni and Bose-Einstein expressions and optical parameters of AZO films were revealed.
Subject Keywords
Nanoparticles
,
Optical materials and properties
,
Spectroscopy
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129725291&origin=inward
https://hdl.handle.net/11511/97521
Journal
Materials Letters
DOI
https://doi.org/10.1016/j.matlet.2022.132415
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Optical characterization of silicon based hydrogenated amorphous thin films by un-visible and infrared measurements
Kılıç, İlker; Katırcıoğlu, Bayram; Department of Physics (2006)
Various carbon content hydrogenated amorphous silicon carbide (a-Si1ŁxCx:H) and hydrogenated amorphous silicon (a-Si:H) thin films have been deposited on various substrates by using plasma enhanced chemical vapour deposition (PECVD) technique. Transmission spectra of these films have been determined within UV-Visible region and the obtained data were analysed to find related physical constants such as; refractive indices, thicknesses, etc. Fourier transform infrared (FT-IR) spectrometry technique has been u...
Temperature-dependent optical characteristics of sputtered Ga-doped ZnO thin films
Gullu, H. H.; Isik, M.; Hasanlı, Nızamı; Parlak, Mehmet (2021-01-01)
The present paper reports structural and optical properties of gallium (Ga) doped ZnO thin films (GZO) grown by magnetron sputtering technique. The crystalline properties were determined from X-ray diffraction measurements and analyses pointed out the crystalline structure as hexagonal, crystalline size as 43 nm and strain as 6.9 x 10(-5). Derivative spectroscopy analyses showed that band gap energy of GZO thin films decreases from 3.50 eV (10 K) to 3.45 eV (300 K). Temperature-band gap energy dependency wa...
Plasma assisted low temperature electron beam deposited NiO thin films for electro-optic applications
Cosar, Mustafa Burak; Icli, Kerem Cagatay; Özenbaş, Ahmet Macit (2018-05-01)
This study aims to create high quality nickel oxide (NiO) thin films at low temperatures, which is a prerequisite for coatings on temperature sensitive substrates. NiO chunks were evaporated by electron beam source, and NiO thin films were deposited at a thickness value around 250 nm. Depositions were performed at different experimental conditions: oxygen flow rate, deposition temperature, deposition rate, and plasma assistance. Deposited films were analyzed with regard to the structural, optical, and elect...
Sol-gel derived silver-incorporated titania thin films on glass: bactericidal and photocatalytic activity
Akgun, Betul Akkopru; Wren, Anthony W.; Durucan, Caner; Towler, Mark R.; Mellott, Nathan P. (Springer Science and Business Media LLC, 2011-08-01)
Titanium dioxide (TiO(2)) and silver-containing TiO(2) (Ag-TiO(2)) thin films were prepared on silica pre-coated float glass substrates by a sol-gel spin coating method. The bactericidal activity of the films was determined against Staphylococcus epidermidis under natural and ultraviolet (UV) illumination by four complementary methods; (1) the disk diffusion assay, (2) UV-induced bactericidal test, (3) qualitative Ag ion release in bacteria inoculated agar media and (4) surface topographical examination by ...
Temperature-dependent material characterization of CuZnSe2 thin films
Gullu, H. H.; Surucu, O.; Terlemezoglu, M.; Isik, M.; Ercelebi, C.; Hasanlı, Nızamı; Parlak, M. (Elsevier BV, 2020-05-01)
In the present work, CuZnSe2 (CZSe) thin films were co-deposited by magnetron sputtering of ZnSe and Cu targets. The structural analyses resulted in the stoichiometric elemental composition and polycrystalline nature without secondary phase contribution in the film structure. Optical and electrical properties of CZSe thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The band gap energy values were obtained using transmittance spectra unde...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Isik and N. Hasanlı, “Temperature-tuned optical bandgap of Al-doped ZnO spin coated nanostructured thin films,”
Materials Letters
, vol. 321, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129725291&origin=inward.