Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Lithocholic acid conjugated mPEG-b-PCL micelles for pH responsive delivery to breast cancer cells
Date
2022-06-10
Author
Isik, Gulhan
Kızıltay, Aysel
Hasırcı, Nesrin
Tezcaner, Ayşen
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
303
views
0
downloads
Cite This
© 2022 Elsevier B.V.In this study, micelles composed of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) copolymer (mPEG-b-PCL), which has ionically conjugated lithocholic acid (LCA) and providing pH sensitive release of LCA in acidic media, were prepared as drug carrier devices for cancer therapy. Micelles were produced by co-solvent evaporation method at two different temperatures (60 °C and 25 °C) and coded as LCA60**M and LCA25**M, respectively). Hydrodynamic diameters were 86.9 nm and 228.2 nm, and zeta potentials were −7.54 mV and −18.83 mV for LCA60**M and LCA25**M, respectively. For all micelles, release of LCA was higher in acidic media (pH 5.0) compared to physiological media (pH 7.4). Micelles loaded with a fluorescent dye, coumarin 6, demonstrated effective internalization into triple negative MDA-MB-231 breast cancer cells in 4 h. LCA60**M (41.7 ± 1.5%) and LCA25**M (44.5 ± 2.2%) had higher inhibitory effect on the cell migration compared to free LCA (64.7 ± 1.3%). Both LCA conjugated micelles decreased lipogenic activity and increased expressions of Bax (1.3 fold) and p53 (1.2 fold) apoptotic genes. Annexin V-FITC results exhibited high apoptotic cell number after the treatment of MDA-MB-231 cells with micelles. Free LCA and LCA conjugated LCA60**M and LCA25**M micelles decreased mitochondrial transmembrane potential of the cells by 41.8 ± 3.0%, 30.4 ± 0.9%, and 57.1 ± 0.5, respectively. Micelles also caused an effective decrease in angiogenesis ability of HUVECs. The novelty of this study is the prepared micelles, which have ionic conjugation of LCA to mPEG-b-PCL, and pH responsive release of LCA demonstrating effective apoptosis on breast cancer cells. These micelles may have great potential for cancer treatment. However, further in vivo studies are needed before clinical translation.
Subject Keywords
Apoptosis
,
Cancer
,
Ionic conjugation
,
Lithocholic acid
,
MDA-MB-231 cells
,
Micelle
,
pH sensitive drug delivery
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129700159&origin=inward
https://hdl.handle.net/11511/97533
Journal
International Journal of Pharmaceutics
DOI
https://doi.org/10.1016/j.ijpharm.2022.121779
Collections
Test and Measurement Center In advanced Technologies (MERKEZ LABORATUVARI), Article
Suggestions
OpenMETU
Core
The Synthesis and characterization of doxorubicin and bortezomib loaded magnetic nanoparticles for targeting tumor cells
Ünsoy, Gözde; Gündüz, Ufuk; Budak, Güven Gürer; Department of Biotechnology (2013)
Chitosan superparamagnetic nanoparticles, loaded with Doxorubicin and Bortezomib were synthesized for treatment of breast and cervical cancers by targeted drug delivery. In vitro cytotoxicity analyses revealed that the efficacy of drugs was highly increased when applied as loaded on nanoparticles. Chitosan superparamagnetic iron oxide nanoparticles (CSMNPs) were in-situ synthesized at different sizes by ionic crosslinking method. The characterization of nanoparticles was performed by XRD, XPS/ESCA, FTIR, TE...
Synthesis and characterization of polymeric magnetic nanoparticles loaded by gemcitabine /
Parsian, Maryam; Gündüz, Ufuk; Tezcaner, Ayşen; Department of Biotechnology (2014)
In this study, different types of magnetic nanoparticles were synthesized for treatment of breast cancer by targeted drug delivery. Polyamidoamine (PAMAM) dendrimer, Chitosan (CS) and Polyhydroxybutyrate (PHB) coated magnetic nanoparticles were prepared and loaded with Gemcitabine. The loading efficiency of drug for various half generations of dendrimer coated magnetic nanoparticles (DcMNPs), Chitosan coated magnetic nanoparticles (CSMNPs) and Polyhydroxybutyrate magnetic nanoparticles (PHB-MNPs) were inves...
Rhodium(0) nanoparticles supported on hydroxyapatite: preparation, characterization and catalytic use in hydrogen generation from hydrolysis of hydrazine borane and ammonia borane
Çelik, Derya; Özkar, Saim; Department of Chemistry (2012)
This dissertation presents the preparation and characterization of rhodium(0) nanoparticles supported on hydroxyapatite, and investigation of their catalytic activity in hydrogen generation from the hydrolysis of hydrazine-borane and ammonia-borane. Rh+3 ions were impregnated on hydroxyapatite by ion-exchange; then rhodium(0) nanoparticles supported on hydroxyapatite were formed in-situ during the hydrolysis of hydrazine-borane at room temperature. The rhodium(0) nanoparticles supported on hydroxyapatite we...
Tannic Acid Inhibits Proliferation, Migration, Invasion of Prostate Cancer and Modulates Drug Metabolizing and Antioxidant Enzymes
KARAKURT, SERDAR; Adalı, Orhan (2016-01-01)
The aim of this study was to investigate the effects of plant phenolic compound tannic acid (TA) on proliferative, metastatic, invasive properties of prostate cancer (PCa) cells; PC-3 and LNCaP, as well as drug metabolizing and antioxidant enzymes. Characterization of TA was done by using FT-IR and NMR. TA dose dependently inhibited the proliferation of PC-3 and LNCaP cells with IC50 values 35.3 mu M and 29.1 mu M, respectively. Wound healing assay showed that TA significantly inhibited (92.7%) migration of...
Polyhydroxybutyrate-Coated Magnetic Nanoparticles for Doxorubicin Delivery: Cytotoxic Effect Against Doxorubicin-Resistant Breast Cancer Cell Line
Yalcin, Serap; Unsoy, Gozde; Mutlu, Pelin; Khodadust, Rouhollah; Gündüz, Ufuk (2014-11-01)
In this study, polyhydroxybutyrate (PHB)-coated magnetic nanoparticles (MNPs) were prepared by coprecipitation of iron salts (Fe2+ and Fe3+) by ammonium hydroxide. Characterizations of PHB-coated MNPs were performed by Fourier transform infrared spectroscopy, x-ray diffraction, dynamic light scattering, thermal gravimetric analysis, vibrating sample magnetometry, and transmission electron microscopy analyses. Doxorubicin was loaded onto PHB-MNPs, and the release efficiencies at different pHs were studied un...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Isik, A. Kızıltay, N. Hasırcı, and A. Tezcaner, “Lithocholic acid conjugated mPEG-b-PCL micelles for pH responsive delivery to breast cancer cells,”
International Journal of Pharmaceutics
, vol. 621, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129700159&origin=inward.