SMN loss dysregulates microtubule-associated proteins in spinal muscular atrophy model

Zobaroğlu Özer, Pelin
Koyunoğlu, Dila
Son, Çağdaş Devrim
Erdem-Yurter, Hayat Erdem
© 2022 Elsevier Inc.Spinal muscular atrophy (SMA) is a rare neurodegenerative disease caused by the absence of survival motor neuron (SMN) protein. SMN loss results in impairments of the cytoskeleton, including microtubules and regulatory proteins. However, the contribution of microtubule-associated proteins (MAPs) to microtubule dysregulations in SMA is not fully understood. In this study, we investigated neuronal MAPs responsible for the microtubule stability and growth, including MAP1A, MAP2, MAP6, MAP7, EB1, and EB3 using an in vitro model of SMA. Decreased MAP2 and EB3 levels were found in SMN-deficient motor neuron-like cells, and EB3 protein level was also relevant to MAP1B. SMN loss leads to an increase in EB3 comet numbers at proximal neurites, indicating increased microtubule growth. Our findings suggest that SMN deficiency simultaneously causes dysregulations of several MAPs, contributing to the perturbations of microtubule dynamics in SMA.
Molecular and Cellular Neuroscience


End-binding 3 protein alterations in an in vitro spinal muscular atrophy model
Koyunoğlu, Dila; Bora, Gamze; Son, Çağdaş Devrim; Yurter, Hayat (2019-09-27)
Background/aim:Spinal muscular atrophy (SMA) is a rare neurodegenerative disease which is caused by mutations in Survival of motor neuron 1(SMN1) gene. Absence of SMN protein leads to cytoskeleton defects, especially in neurons, due to dysregulations in regulatory proteins. Our previous results showed impaired microtubule stability in SMN depleted cells and also alterations in some microtubule associated proteins, including microtubule-associated protein 1B (MAP1B). MAP...
PATZ1 Is a DNA Damage-Responsive Transcription Factor That Inhibits p53 Function
Keskin, Nazli; Deniz, Emre; Eryilmaz, Jitka; Un, Manolya; Batur, Tugce; Ersahin, Tulin; Atalay, Rengül; Sakaguchi, Shinya; Ellmeier, Wilfried; ERMAN, MEHMET BATU (2015-05-01)
Insults to cellular health cause p53 protein accumulation, and loss of p53 function leads to tumorigenesis. Thus, p53 has to be tightly controlled. Here we report that the BTB/POZ domain transcription factor PATZ1 (MAZR), previously known for its transcriptional suppressor functions in T lymphocytes, is a crucial regulator of p53. The novel role of PATZ1 as an inhibitor of the p53 protein marks its gene as a proto-oncogene. PATZ1-deficient cells have reduced proliferative capacity, which we assessed by tran...
MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells
Cagatay, Seda Tuncay; Cimen, Ismail; SAVAŞ, BERNA; Banerjee, Sreeparna (Springer Science and Business Media LLC, 2013-04-01)
Although metastasis associated protein 1 (MTA1) has been widely linked to tumor metastasis, the relevant mechanisms remain to be elucidated, especially in colorectal cancer (CRC). Here, we have investigated the link between MTA1, metastasis and epithelial-mesenchymal transition (EMT) in CRC. Eighteen normal colon tissues and 91 resected tumor samples were analyzed for MTA1 expression by immunohistochemistry (IHC). IHC indicated low or no nuclear MTA1 expression in the normal tissues and significantly higher...
Intelligent Ratio: A New Method for Carrier and Newborn Screening in Spinal Muscular Atrophy
Cavdarli, Busranur; Ozturk, Fatma Nihal; Guntekin Ergun, Sezen; ERGÜN, MEHMET ALİ; Dogan, Ozlem; Percin, Emriye Ferda (Mary Ann Liebert Inc, 2020-09-01)
Aim:Spinal muscular atrophy (SMA) is an inherited, autosomal recessive neuromuscular disease that causes high morbidity and mortality. The prevalence is 1-2/100,000, while the incidence is 1/6000-1/10,000 among live births. Due to the high carrier frequency (1/40-1/60) of SMA, screening can prevent new cases. The aim of the current study was to present the development of a new, quantitative, real-time, polymerase chain reaction (PCR)-based screening test that uses an intelligent ratio (IR) for analyses, as ...
SRC family kinase inhibitors antagonize the toxicity of multiple serotypes of botulinum neurotoxin in human embryonic stem cell-derived motor neurons.
Kiriş, Erkan; Nuss, JE; Wanner, LM; Peyser, BD; Du, HT; Gomba, GY; Kota, KP; Panchal, RG; Gussio, R; Kane, CD; Tessarollo, L; Bavari, S (2015-05-01)
Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors a...
Citation Formats
P. Zobaroğlu Özer, D. Koyunoğlu, Ç. D. Son, H. E. Erdem-Yurter, and G. BORA, “SMN loss dysregulates microtubule-associated proteins in spinal muscular atrophy model,” Molecular and Cellular Neuroscience, vol. 120, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: