Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of Full-field and Mean-field Models for Pure Grain Growth Simulations
Date
2021-03-01
Author
Şimşir, Caner
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
178
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/97570
Journal
hittite journal of science engineering
DOI
https://doi.org/10.17350/hjse19030000211
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Investigation of decoupling techniques for linear and nonlinear systems
Kalaycıoğlu, Taner; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2018)
Structural coupling methods are widely used in predicting dynamics of coupled systems. In this study, the reverse problem, i.e. predicting the dynamic behavior of a particular subsystem from the knowledge of the dynamics of the overall system and of all the other subsystems, is studied. This problem arises when a substructure cannot be measured separately, but only when coupled to neighboring substructures. The dynamic decoupling problem of coupled linear structures is well investigated in literature. Howev...
Investigation of the structural properties of low dimensional nanostructures : molecular dynamics simulations
Özdamar, Burak; Erkoç, Şakir; Department of Physics (2013)
This study aims to investigate the structural and thermodynamic properties of nanostructures which are generated from different atoms and geometries. The nanostructures in question are boron nitride nanoparticles, silicon nanowires along with sawtooth-like graphene nanoribbons. The goal is to calculate the specific heat values of boron nitride nanoparticles while the mechanical properties of the other nanostructures are investigated under uniaxial strain. The structural behaviors of these generated nanopart...
Investigation of structural properties of metal nanorods: molecular dynamics simulations
Yağlı, Hüseyin; Erkoç, Şakir; Yazıcıoğlu, Yiğit; Department of Micro and Nanotechnology (2014)
After recent advances in microscopy and characterization techniques reached smaller length scales down to individual atoms, nanowires attracted a large interest. The material properties that are not changeable in bulk materials can be controlled in nanowires to fit the requirements of the intended application area. Characterization of nanowires is important in order to establish a reproducible relationship with their characteristics and their desired functionality. In this thesis, structural properties of c...
Investigation of music algorithm based and wd-pca method based electromagnetic target classification techniques for their noise performances
Ergin, Emre; Sayan, Gönül; Department of Electrical and Electronics Engineering (2009)
Multiple Signal Classification (MUSIC) Algorithm based and Wigner Distribution-Principal Component Analysis (WD-PCA) based classification techniques are very recently suggested resonance region approaches for electromagnetic target classification. In this thesis, performances of these two techniques will be compared concerning their robustness for noise and their capacity to handle large number of candidate targets. In this context, classifier design simulations will be demonstrated for target libraries con...
Investigation of novel topological indices and their applications in organic chemistry
Gümüş, Selçuk; Türker, Burhan Lemi; Department of Chemistry (2009)
Numerical descriptors, beginning with Wiener, and then named topological indices by Hosoya, have gained gradually increasing importance along with other descriptors for use in QSAR and QSPR studies. Being able to estimate the physical or chemical properties of a yet nonexistent substance as close as possible is very important due to huge consumption of time and money upon direct synthesis. In addition, one may face safety problem as in the case of explosives. There have been almost hundred topological indic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Şimşir, “Investigation of Full-field and Mean-field Models for Pure Grain Growth Simulations,”
hittite journal of science engineering
, vol. 8, no. 1, pp. 41–47, 2021, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97570.