Simultaneous Crystallization and Strain Induction Enable Light-Emitting Germanium Nano/Microbridges for Infrared Lasers

Unlu, Buse
Ghasemi, Milad
Yerci, Selçuk
Boztug, Cicek
© 2022 American Chemical Society. All rights reserved.Tensilely strained germanium has been considered a suitable material platform for the realization of a monolithically integrated infrared laser that could allow the development of miniaturized photonic integrated circuits. The crystalline quality of germanium is one of the concerns in this regard since it has to be in the high-quality single-crystal form to endure the required amounts of tensile strain so that the material turns into a gain medium. For that purpose, various researchers have developed tensilely strained Ge nano/microstructures fabricated from a high-crystalline-quality germanium-on-insulator substrate or an epitaxially grown germanium film on silicon, where the fabrication of germanium relies on costly processes (i.e., molecular beam epitaxy, metal-organic chemical vapor deposition). Here, we introduce a methodology to fabricate tensilely strained single-crystalline suspended Ge microstructures through a room-temperature-operated, easy-to-use, environmentally friendly physical vapor deposition technique, sputtering. A single rapid thermal annealing process allows both the crystallization of the sputtered Ge microstructures via liquid phase epitaxy and transforms the capping layer into a stressor. The dimensions of the microstructures, as well as the amount of strain transferred from the stressor, can be easily adjusted by varying the duration of the corresponding wet etching processes. Suspended germanium microstructures with lengths varying between 2.5 and 20 μm are fabricated, and uniaxial strain levels as high as 2.4% are transferred to microstructures along the [110] direction as demonstrated via Raman spectroscopy. The fabricated microstructures demonstrate room-temperature light emission in agreement with the strain profile calculated via finite element method simulations. The methods introduced in this work are suitable to fabricate moderately doped Ge, as well, with nanoscale dimensions for high strain transfer, which could enhance the gain coefficient and enable Ge to serve as the gain medium of a fully integrated CMOS-compatible laser.
ACS Applied Nano Materials


Synthesis of a Novel and More Sustainable Cationic Bleach Activator, N-[4-(N, N, N)-Triethylammoniumchloride-butanoyl] Butyrolactam, for Cotton: Optimization and Theoretical Limitations
Altay, Pelin; Yıldırım, Erol; Gürsoy, Nevin Çiğdem; Hauser, Peter J.; El-Shafei, Ahmed (2022-04-11)
© 2022 American Chemical Society. All rights reserved.Activated bleach systems have the potential to produce more efficient kinetically potent bleaching systems through increased oxidation rates with reduced energy cost and less time, hence causing less cellulose polymer chain damage or degradation than conventional hot peroxide bleaching. This article presents a study at the molecular level of a novel and more sustainable cationic bleach activator for cotton than aromatic-based cationic bleach activators u...
Plasmonic light-management interfaces by polyol-synthesized silver nanoparticles for industrial scale silicon solar cells
Birant, Gizem; Öztürk, İbrahim Murat; Doğanay, Doğa; Ünalan, Hüsnü Emrah; Bek, Alpan (2020-01-01)
© 2020 American Chemical Society. All rights reserved.Plasmonic interfaces are used as an alternative and highly effective light management technique for solar cells. Topdown approaches produce well-ordered and carefully designed plasmonic structures for tailor-made light management; however, they are costly, and their fabrication is time-consuming. Thus, their utilization for industrial-scale solar cells is not trivial. It has been shown that dewetting is a cost- and time-effective bottom-up approach for t...
Boron Cage Triggered Micellization of a Neutral-Cationic Block Copolymer and Preparation of Boron-Containing Layer-by-Layer Microparticles
Aydemir, Umut; Ugur, Esma; Ermis, Cagdas; Aydemir, Fatma Nur; Ozdemir, Erhan; Banerjee, Sreeparna; Yıldırım, Erol; Akdağ, Akın; Erel Göktepe, İrem (2022-01-01)
© 2022 American Chemical Society. All rights reserved.The preparation of a polymer carrier for a boron delivery agent is presented through a combination of experimental and computational studies. A dodecahydro-closo-dodecaborate (B12H12)2- (B12) anion was used as a model boron-containing agent due to its high boron content. Quaternized poly(2-vinyl pyridine)-b-poly(ethylene oxide) (QP2VP-b-PEO) was chosen as a model neutral-cationic block copolymer to construct the carrier. The electrostatic association bet...
Poly(lactic acid)-layered silicate nanocomposites: The effects of modifier and compatibilizer on the morphology and mechanical properties
Cumkur, Eda Acik; Baouz, Touffik; Yılmazer, Ülkü (2015-10-10)
Poly(lactic acid) (PLA) based nanocomposites were prepared to investigate the effects of types of nanoclays. Five different organically modified nanoclays (Cloisites((R))15A, 25A, and 30B, and Nanofils((R))5 and 8) were used. Two rubbery compatibilizers, ethylene-glycidyl methacrylate (E-GMA) and ethylene-butyl acrylate-maleic anhydride, were used in the nanocomposites as compatibilizer-impact modifier. The degree of clay dispersion, the chemical compatibility between the polymer matrix and the compatibiliz...
Fabrication and characterization of carbon nanotube based supercapacitor electrodes
Doğru, Itır Bakış; Ünalan, Hüsnü Emrah; Turan, Raşit; Department of Micro and Nanotechnology (2016)
Nanotechnology has started a new era where the nano-sized particles are manipulated. These nano-sized particles have lots of applications in a number of fields. Although carbon is one of the most abundant elements of the Earth or human body, in recent years it get an incredible perspective because of its nano-sized constructions like fullerene, graphene, graphite and carbon nanotubes. Carbon nanotubes are flawless cylinders consists of carbon where their radius are a few nanometers while their lengths are a...
Citation Formats
B. Unlu, M. Ghasemi, S. Yerci, and C. Boztug, “Simultaneous Crystallization and Strain Induction Enable Light-Emitting Germanium Nano/Microbridges for Infrared Lasers,” ACS Applied Nano Materials, vol. 5, no. 4, pp. 4700–4709, 2022, Accessed: 00, 2022. [Online]. Available: