Versatile-in-All-Trades: Multifunctional Boron-Doped Calcium-Deficient Hydroxyapatite Directs Immunomodulation and Regeneration

© 2022 American Chemical Society. All rights reserved.Osseointegration of implants depends on several intertwined factors: osteogenesis, angiogenesis, and immunomodulation. Lately, novel reinforcements allowing faster bonding with osseous tissue have been explored intensively. In this study, we hypothesized the use of boron as a major multifunctional ion to confer versatility to calcium-deficient hydroxyapatite (cHA) synthesized by a wet precipitation/microwave reflux method. By synthesis of boron-doped calcium-deficient hydroxyapatite (BcHA), we expected to obtain an osteoimmunomodulatory and regenerative nanoreinforcement. BcHA was found to possess a pure HA phase, a greater surface area (66.41 m2/g, p = 0.028), and cumulative concentrations of Ca (207.87 ± 6.90 mg/mL, p < 0.001) and B (112.70 ± 11.79 mg/mL, p < 0.001) released in comparison to cHA. Osteogenic potential of BcHA was analyzed using human fetal osteoblasts. BcHA resulted in a drastic increase in the ALP activity (1.11 ± 0.11 mmol/gDNA·min, p < 0.001), biomineralization rate, and osteogenic gene expressions compared to cHA. BcHA angiogenic potential was investigated using human umbilical cord vein endothelial cells. Significantly, the highest VEGF-A release (1111.14 ± 87.82 in 4 h, p = 0.009) and angiogenic gene expressions were obtained for BcHA-treated samples. These samples were also observed to induce a more prominent and highly branched tube network. Finally, inflammatory and inflammasome responses toward BcHA were elucidated using human monocyte-derived macrophages differentiated from THP-1s. BcHA exhibited lower CAS-1 release (50.18 ± 5.52 μg/gDNAμg/gDNA) and higher IL-10 release (126.97 ± 15.05 μg/gDNA) than cHA. In addition, BcHA treatment led to increased expression of regenerative genes such as VEGF-A, RANKL, and BMP-2. In vitro results demonstrated that BcHA has tremendous osteogenic, angiogenic, and immunomodulatory potential to be employed as a "versatile-in-all-trades" modality in various bone tissue engineering applications.
ACS Biomaterials Science and Engineering


Simultaneous Crystallization and Strain Induction Enable Light-Emitting Germanium Nano/Microbridges for Infrared Lasers
Unlu, Buse; Ghasemi, Milad; Yerci, Selçuk; Boztug, Cicek (2022-04-22)
© 2022 American Chemical Society. All rights reserved.Tensilely strained germanium has been considered a suitable material platform for the realization of a monolithically integrated infrared laser that could allow the development of miniaturized photonic integrated circuits. The crystalline quality of germanium is one of the concerns in this regard since it has to be in the high-quality single-crystal form to endure the required amounts of tensile strain so that the material turns into a gain medium. For t...
Synthesis of a Novel and More Sustainable Cationic Bleach Activator, N-[4-(N, N, N)-Triethylammoniumchloride-butanoyl] Butyrolactam, for Cotton: Optimization and Theoretical Limitations
Altay, Pelin; Yıldırım, Erol; Gürsoy, Nevin Çiğdem; Hauser, Peter J.; El-Shafei, Ahmed (2022-04-11)
© 2022 American Chemical Society. All rights reserved.Activated bleach systems have the potential to produce more efficient kinetically potent bleaching systems through increased oxidation rates with reduced energy cost and less time, hence causing less cellulose polymer chain damage or degradation than conventional hot peroxide bleaching. This article presents a study at the molecular level of a novel and more sustainable cationic bleach activator for cotton than aromatic-based cationic bleach activators u...
Differential Behavior of Metal Sulfides in Hydrothermal Plumes and Diffuse Flows
Estes, Emily R.; Berti, Debora; Findlay, Alyssa J.; Hochella, Michael F.; Shaw, Timothy J.; Yücel, Mustafa; De Carlo, Eric H.; Luther, George W. (2022-06-16)
© 2022 American Chemical Society. All rights reserved.Extensive sampling of high-Temperature hydrothermal fluids and diffuse flows within <2 m of the vent orifices at the 9°50′N East Pacific Rise (EPR) hydrothermal vent field reveals formation of nanoparticulate phases and rapid precipitation/aggregation of metal sulfide minerals upon mixing of vent fluid with ambient seawater. Here, we characterize metal sulfide phases via scanning and transmission electron microscopy (SEM, TEM) in addition to quantifying ...
Boron Cage Triggered Micellization of a Neutral-Cationic Block Copolymer and Preparation of Boron-Containing Layer-by-Layer Microparticles
Aydemir, Umut; Ugur, Esma; Ermis, Cagdas; Aydemir, Fatma Nur; Ozdemir, Erhan; Banerjee, Sreeparna; Yıldırım, Erol; Akdağ, Akın; Erel Göktepe, İrem (2022-01-01)
© 2022 American Chemical Society. All rights reserved.The preparation of a polymer carrier for a boron delivery agent is presented through a combination of experimental and computational studies. A dodecahydro-closo-dodecaborate (B12H12)2- (B12) anion was used as a model boron-containing agent due to its high boron content. Quaternized poly(2-vinyl pyridine)-b-poly(ethylene oxide) (QP2VP-b-PEO) was chosen as a model neutral-cationic block copolymer to construct the carrier. The electrostatic association bet...
Plasmonic light-management interfaces by polyol-synthesized silver nanoparticles for industrial scale silicon solar cells
Birant, Gizem; Öztürk, İbrahim Murat; Doğanay, Doğa; Ünalan, Hüsnü Emrah; Bek, Alpan (2020-01-01)
© 2020 American Chemical Society. All rights reserved.Plasmonic interfaces are used as an alternative and highly effective light management technique for solar cells. Topdown approaches produce well-ordered and carefully designed plasmonic structures for tailor-made light management; however, they are costly, and their fabrication is time-consuming. Thus, their utilization for industrial-scale solar cells is not trivial. It has been shown that dewetting is a cost- and time-effective bottom-up approach for t...
Citation Formats
A. E. Pazarçeviren, S. Akbaba, Z. Evis, and A. Tezcaner, “Versatile-in-All-Trades: Multifunctional Boron-Doped Calcium-Deficient Hydroxyapatite Directs Immunomodulation and Regeneration,” ACS Biomaterials Science and Engineering, vol. 8, no. 7, pp. 3038–3053, 2022, Accessed: 00, 2022. [Online]. Available: