The aerodynamic effects of blade pitch angle on small horizontal axis wind turbines

2022-01-01
Kaya, Mehmet Numan
Uzol, Oğuz
Ingham, Derek
Köse, Faruk
Buyukzeren, Riza
© 2022, Emerald Publishing Limited.Purpose: The purpose of this paper is to thoroughly investigate the aerodynamic effects of blade pitch angle on small scaled horizontal axis wind turbines (HAWTs) using computational fluid dynamics (CFD) method to find out the sophisticated effects on the flow phenomena and power performance. Design/methodology/approach: A small HAWT is used as a reference to validate the model and examine the aerodynamic effects. The blade pitch angle was varied between +2 and −6 degrees, angles which are critical for the reference wind turbine in terms of performance, and the CFD simulations were performed at different tip speed ratio values, λ = 2, 3, 4, 5, 6, 7, 9 and 10.5 to cover the effects in various conditions. Results are examined in two different aspects, namely, general performance and the flow physics. Findings: The power performance varies significantly according to the tip speed ratio; the power coefficient increases up to a certain pitch angle at the design tip speed ratio (λ = 6); however, between λ = 2 and 4, the more the blade is pitched downwards, the larger is the power coefficient, the smaller is the thrust coefficient. Similarly, for tip speed ratios higher than λ = 8, the positive effect of the low pitch angles on the power coefficient at λ = 6 reverses. The flow separation location moves close to the leading edge at low tip speed ratios when the blade is pitched upwards and the also tip vortices become more intense. In conclusion, the pitch control can significantly contribute to the performance of small HAWTs depending on different conditions. Originality/value: In the literature, only very little attention has been paid to the aerodynamic effects of pitch angle on HAWTs, and no such study is available about the effects on small HAWTs. The change of blade pitch angle was maintained at only one degree each time to capture even the smallest aerodynamic effects, and the results are presented in terms of the power performance and flow physics.
International Journal of Numerical Methods for Heat and Fluid Flow

Suggestions

Investigations on blade tip tilting for hawt rotor blades using CFD
Elfarra, Monier A.; Sezer Uzol, Nilay; Akmandor, I. Sinan (2015-02-26)
The main purpose of this paper is to study the aerodynamic effects of blade tip tilting on power production of horizontal-axis wind turbines by using Computational Fluid Dynamics (CFD). For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes Equations are solved and different turbulence models including the Spalart-Allmaras, Standard k-ε, k-ε Yang-Shih and SST k-ω models are used and tested. The results are shown in terms of power gener...
The Effects of static aeroelasticity on the performance of two-dimensional converging diverging nozzles
Düzel, Ümran; Eyi, Sinan; Department of Aerospace Engineering (2014)
This thesis analyzes the effects of static aeroelasticity on the performance of two dimensional converging diverging nozzles. A Flow analysis is conducted on five different configurations of two dimensional converging-diverging nozzles. Computational study is validated with experimental data. Two of the configurations, which have the same throat area, throat radius, and convergence angle and total nozzle length, are selected as the baseline geometries. By modifying throat radius and keeping all other geomet...
Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor
SEZER UZOL, NİLAY; Uzol, Oğuz (2013-01-01)
This paper presents an investigation of the effect of steady and transient free-stream wind shear on the wake structure and performance characteristics of a horizontal axis wind turbine rotor. A new three-dimensional unsteady vortex-panel method potential flow solver based on a free-vortex wake methodology, AeroSIM+, is used for this purpose. The code is validated using the experimental data from the National Renewable Energy Laboratory Unsteady Aerodynamics Experiments. The effects of vortex core model, co...
Numerical and experimantal analysis of flapping motion
Sarıgöl, Ebru; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2007)
The aerodynamics of two-dimensional and three-dimensional flapping motion in hover is analyzed in incompressible, laminar flow at low Reynolds number regime. The aim of this study is to understand the physics and the underlying mechanisms of the flapping motion using both numerical tools (Direct Numerical Simulation) and experimental tools (Particle Image Velocimetry PIV technique). Numerical analyses cover both two-dimensional and three-dimensional configurations for different parameters using two differen...
Evaluation of the Effect of Spar Cap Fiber Angle of Bending-Torsion Coupled Blades on the Aero-Structural Performance of Wind Turbines
Şener, Özgün; Gozc, M. Ozan; Kayran, Altan (ASME International, 2018-08-01)
This paper presents a comprehensive study of the evaluation of the effect of spar cap fiber orientation angle of composite blades with induced bending–torsion coupling (IBTC) on the aero-structural performance wind turbines. Aero-structural performance of wind turbines with IBTC blades is evaluated with the fatigue load mitigation in the whole wind turbine system, tower clearances, peak stresses in the blades, and power generation of wind turbines. For this purpose, a full E-glass/epoxy reference blade has ...
Citation Formats
M. N. Kaya, O. Uzol, D. Ingham, F. Köse, and R. Buyukzeren, “The aerodynamic effects of blade pitch angle on small horizontal axis wind turbines,” International Journal of Numerical Methods for Heat and Fluid Flow, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131152191&origin=inward.