Use of carbon/epoxy towpregs during dry filament winding of composite flat specimens and pressure vessels

2022-6-28
Ökten, Yiğit Kemal
The main purpose of this thesis is to evaluate the effects of certain processing parameters on the performance of carbon/epoxy towpreg wound composite structures. For this purpose, composite sample productions and their evaluations were conducted in two steps. In the first step, dry winding of carbon/epoxy towpregs was used for the production of flat composite plates. Their evaluation was performed by rheological analysis, interlaminar shear tests and unidirectional tensile tests. In the second step, towpreg dry winding was used for the production of composite pressure vessel samples. Their performance was evaluated by observing the effects of various winding process parameters on the safety of the vessels via hydrostatic burst pressure tests. Compared to the traditional wet filament winding, the main difficulty observed was maintaining the “straight towpreg path” necessary for efficient winding operations. This problem was prevented by applying higher tension forces during dry winding. It was generally concluded that, when the process parameters were properly determined, conventional carbon/epoxy wet filament winding technique could be replaced by carbon/epoxy towpreg dry winding technique for the production of both flat structures and hollow vessel structures.

Suggestions

Mechanical performance of composite flat specimens and pressure vessels produced by carbon/epoxy towpreg dry winding
Okten, Yigit Kemal; Kaynak, Cevdet (2022-10-01)
The main purpose of this study is to evaluate the effects of certain processing parameters on the mechanical performance of carbon/epoxy towpreg wound composite structures. For this purpose, composite sample productions and their evaluations were conducted in two steps. In the first step, dry winding of carbon/epoxy towpregs was used to produce flat composite plates. Their evaluation was performed by rheological analysis, interlaminar shear tests, and unidirectional tensile tests. In the second step, towpre...
INVESTIGATION AND OPTIMIZATION OF WINGLETS FOR HAWT ROTOR BLADES
Elfarra, Monier A.; Akmandor, I. Sinan; Sezer Uzol, Nilay (2011-03-25)
The main purpose of this paper is to optimize winglet geometry by using CFD with Genetic Algorithm and study its effects on power production. For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes equations are solved and different turbulence models including the Spalart-Allmaras, k-epsilon Launder-Sharma, k-epsilon Yang-Shih and SST k-omega models are used and tested. The results of the power curve and the pressure distribution at dif...
Performance of a non-linear adaptive beamformer algorithm for signal-of-interest extraction /
Oğuz, Özkan; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2015)
In this thesis a non-linear adaptive beamforming technique, Adaptive Projections Subgradient Method [1] (APSM) is considered. This method uses projections over convex sets in Reproducing Kernel Hilbert Space. Main advantage of this method is observed if the signal-of-interest is due to digital modulation and when there are more jammers than the number of antennas. The performance of this non-linear beamforming technique is compared with well-known methods including Minimum Variance Distortionless Response [...
Design of economical noise array experiments for a partially controlled simulation environment
Köksal, Gülser (1998-12-01)
Design of economical experiments for estimation of a response function's moments in a partially controlled laboratory environment is studied. The noise factors affecting the response are assumed to be statistically independent and normally distributed. It is also assumed that if a factor is set to a specific level in the experimentation, its actual value is also a normally distributed random variable with a smaller variance. Experimental design levels of the factors are found by matching first few moments o...
Effects of Substrate Parameters on the Resonance Frequency of Double-sided SRR Structures under Two Different Excitations
Ekmekci, E.; Averitt, R. D.; Sayan, Gönül (2010-07-08)
In this study, we numerically investigate the effects of substrate parameters (i.e., the thickness and the permittivity) on the resonance frequency of the double-sided SRR (DSRR) structure under two different excitation conditions. This includes either electric or magnetic excitations which are two common techniques to obtain a resonant effective permittivity or permeability, respectively. The numerical calculations are performed using CST Microwave Studio. The numerical results reveal a similar trend in th...
Citation Formats
Y. K. Ökten, “Use of carbon/epoxy towpregs during dry filament winding of composite flat specimens and pressure vessels,” M.S. - Master of Science, Middle East Technical University, 2022.