Spatially-Coupled Code Design for Partial-Response Channels: Optimal Object-Minimization Approach

2018-01-01
Hareedy, Ahmed
Esfahanizadeh, Homa
Tan, Andrew
Dolecek, Lara
© 2018 IEEE.Spatially-coupled (SC) codes are among the most attractive error-correcting codes for use in modern storage devices. SC codes are constructed by partitioning an underlying block code and coupling the partitioned components. Here, we focus on circulant-based SC codes. Recently, the optimal overlap (OO), circulant power optimizer (CPO) approach was introduced to construct high performance SC codes for AWGN and Flash channels. The OO partitioning stage operates on the protograph of the SC code, while the CPO optimizes the circulant powers, in order to minimize the number of detrimental objects. Since the nature of detrimental objects in the graph of a code critically depends on the characteristics of the channel of interest, extending the OO-CPO approach to construct SC codes for channels with intrinsic memory is not a straightforward task. In this paper, we tackle one relevant extension; we construct high performance SC codes for practical 1-D magnetic recording channels, i.e., partial-response (PR) channels. Via combinatorial techniques, we carefully build and solve the optimization problem of the OO partitioning, focusing on the objects of interest in the case of PR channels. Then, we customize the CPO to further reduce the number of these objects in the graph of the code. SC codes designed using the OO-CPO approach for PR channels outperform prior state-of-the-art SC codes by around 3 orders of magnitude in FER and 1.1 dB in SNR, and more intriguingly, outperform structured block codes of the same length by around 1.6 orders of magnitude in FER and 0.4 dB in SNR.
2018 IEEE Global Communications Conference, GLOBECOM 2018

Suggestions

A Combinatorial Methodology for Optimizing Non-Binary Graph-Based Codes: Theoretical Analysis and Applications in Data Storage
Hareedy, Ahmed; Lanka, Chinmayi; Guo, Nian; Dolecek, Lara (2019-04-01)
© 2018 IEEE.Non-binary (NB) low-density parity-check (LDPC) codes are graph-based codes that are increasingly being considered as a powerful error correction tool for modern dense storage devices. Optimizing NB-LDPC codes to overcome their error floor is one of the main code design challenges facing storage engineers upon deploying such codes in practice. Furthermore, the increasing levels of asymmetry incorporated by the channels underlying modern dense storage systems, e.g., multi-level Flash systems, exa...
Spatially Coupled Codes Optimized for Magnetic Recording Applications
Esfahanizadeh, Homa; Hareedy, Ahmed; Dolecek, Lara (2017-02-01)
© 1965-2012 IEEE.Spatially coupled (SC) codes are a class of sparse graph-based codes known to have capacity-approaching performance. SC codes are constructed based on an underlying low-density parity-check (LDPC) code, by first partitioning the underlying block code and then putting replicas of the components together. Significant recent research efforts have been devoted to the asymptotic, ensemble-averaged study of SC codes, as these coupled variants of the existing LDPC codes offer excellent properties....
Linear codes from weakly regular plateaued functions and their secret sharing schemes
Mesnager, Sihem; Özbudak, Ferruh; Sinak, Ahmet (2019-03-01)
Linear codes, the most significant class of codes in coding theory, have diverse applications in secret sharing schemes, authentication codes, communication, data storage devices and consumer electronics. The main objectives of this paper are twofold: to construct three-weight linear codes from plateaued functions over finite fields, and to analyze the constructed linear codes for secret sharing schemes. To do this, we generalize the recent contribution of Mesnager given in (Cryptogr Commun 9(1):71-84, 2017...
Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes
Lopez-Permouth, Sergio R.; Ozadam, Hakan; Özbudak, Ferruh; SZABO, Steve (2013-01-01)
Cyclic, negacyclic and constacyclic codes are part of a larger class of codes called polycyclic codes; namely, those codes which can be viewed as ideals of a factor ring of a polynomial ring. The structure of the ambient ring of polycyclic codes over GR(p(a), m) and generating sets for its ideals are considered. It is shown that these generating sets are strong Groebner bases. A method for finding such sets in the case that a = 2 is given. This explicitly gives the Hamming distance of all cyclic codes of le...
A Channel-Aware Combinatorial Approach to Design High Performance Spatially-Coupled Codes
Hareedy, Ahmed; Wu, Ruiyi; Dolecek, Lara (2020-08-01)
Because of their capacity-approaching performance and their complexity/latency advantages, spatially-coupled (SC) codes are among the most attractive error-correcting codes for use in modern dense data storage systems. SC codes are constructed by partitioning an underlying block code and coupling the partitioned components. Here, we focus on circulant-based SC codes. Recently, the optimal overlap (OO), circulant power optimizer (CPO) approach was introduced to construct high performance SC codes for additiv...
Citation Formats
A. Hareedy, H. Esfahanizadeh, A. Tan, and L. Dolecek, “Spatially-Coupled Code Design for Partial-Response Channels: Optimal Object-Minimization Approach,” presented at the 2018 IEEE Global Communications Conference, GLOBECOM 2018, Abu Dhabi, Birleşik Arap Emirlikleri, 2018, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063304815&origin=inward.