Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers
Download
index.pdf
Date
2022-07-01
Author
Longinos, Sotirios Nik.
Longinou, Dionisia Dimitra
Myrzakhmetova, Nurbala
Akimbayeva, Nazgul
Zhursumbaeva, Mariamkul
Abdiyev, Kaldibek
Toktarbay, Zhexenbek
Parlaktuna, Mahmut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
73
downloads
Cite This
Heat generation during gas hydrate formation is an important problem because it reduces the amount of water and gas that become gas hydrates. In this research work, we present a new design of an impeller to be used for hydrate formation and to overcome this concern by following the hydrodynamic literature. CH4 hydrate formation experiments were performed in a 5.7 L continuously stirred tank reactor using a butterfly turbine (BT) impeller with no baffle (NB), full baffle (FB), half baffle (HB), and surface baffle (SB) under mixed flow conditions. Four experiments were conducted separately using single and dual impellers. In addition to the estimated induction time, the rate of hydrate formation, hydrate productivity and hydrate formation rate, constant for a maximum of 3 h, were calculated. The induction time was less for both single and dual-impeller experiments that used full baffle for less than 3 min and more than 1 h for all other experiments. In an experiment with a single impeller, a surface baffle yielded higher hydrate growth with a value of 42 × 10−8 mol/s, while in an experiment with dual impellers, a half baffle generated higher hydrate growth with a value of 28.8 × 10−8 mol/s. Both single and dual impellers achieved the highest values for the hydrate formation rates that were constant in the full-baffle experiments.
Subject Keywords
butterfly turbine
,
gas hydrates
,
hydrate formation
,
induction time
URI
https://hdl.handle.net/11511/98512
Journal
Molecules
DOI
https://doi.org/10.3390/molecules27144388
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Experimental investigation of carbon dioxide injection effects on methane-propane-carbon dioxide mixture hydrates
Abbasov, Abbas; Merey, Sukru; Parlaktuna, Mahmut (2016-08-01)
In this research, first, hydrate with high saturation in porous media (sand sediments) was formed in fully filled high pressure cell by using a mixture of the following gases at 4 degrees C: methane (CH4), propane (C3H8) and carbon dioxide (CO2). The feed mole percent of the gases used was selected as follows: CH4 (95%), C3H8 (3%), CO2 (2%). This selection was made in order to form natural gas hydrate of thermogenic origin (sII type hydrate). Thereafter, CO2 injection into the high saturation hydrate media ...
Numerical simulations for short-term depressurization production test of two gas hydrate sections in the Black Sea
MEREY, ŞÜKRÜ; Sınayuç, Çağlar (2017-08-01)
Gas hydrates are considered as a promising energy source and the Black Sea has a high potential of gas hydrates. The Danube Delta of the Black Sea is the most well-known prospect in the Black Sea after many geological and geophysical studies such as bottom-simulation reflectors (BSR) and electromagnetic surveys. In this study, gas production simulations from two gas hydrate layers (6 m thick hydrate layer at 60 mbsf and 30 m-thick hydrate layer at 140 mbsf above BSR at 350 mbsf) at the same locations with a...
Numerical simulations of gas production from Class 1 hydrate and Class 3 hydrate in the Nile Delta of the Mediterranean Sea
MEREY, ŞÜKRÜ; Longinos, Sotirios Nik (Elsevier BV, 2018-04-01)
Gas hydrate reservoirs are considered as near-future energy resources in the world. As well as the many places in the world, there is also gas hydrate potential in the Mediterranean Sea. In this study, by using the literature data, it was aimed to understand whether the Mediterranean Sea includes necessary parameters for producible gas hydrate reservoirs. It was shown that the Mediterranean Sea contains all of these parameters (source gas, appropriate pressure and temperature, coarse sand potential, etc.). ...
Examination of behavior of lysine on methane (95%)-propane (5%) hydrate formation by the use of different impellers
Longinos, Sotirios Nik; Parlaktuna, Mahmut (2021-03-01)
Hydrate formation characteristics and hydrodynamic behavior have been investigated for mixture of methane-propane hydrate formation with pure water and with the amino acid of lysine 1.5 wt% at 24.5 bars and 2 degrees C. There were total 12 experiments with full and no baffle estimating the induction time, rate of hydrate formation, hydrate productivity and power consumption. The outcomes showed that radial flow experiments with radial flow have better behavior compared to mixed flow ones due to better inter...
The effect of experimental conditions on natural gas hydrate formation
Longinos, Sotirios; Parlaktuna, Mahmut; Department of Petroleum and Natural Gas Engineering (2020)
Natural gas hydrates (NGH) are proposed as gas storage and transportation media owing to their high gas content and long-term stability of hydrate crystal structure at common refrigeration temperatures and atmospheric pressure. Technically feasible, cost efficient hydrate production is one of the crucial items of the whole chain of storage and transportation of gas by means of NGH technology. This study investigated the effects of types of impellers and baffles, and the use of promoters on natural gas hydra...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. N. Longinos et al., “Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers,”
Molecules
, vol. 27, no. 14, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/98512.