Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical simulations for short-term depressurization production test of two gas hydrate sections in the Black Sea
Date
2017-08-01
Author
MEREY, ŞÜKRÜ
Sınayuç, Çağlar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
Gas hydrates are considered as a promising energy source and the Black Sea has a high potential of gas hydrates. The Danube Delta of the Black Sea is the most well-known prospect in the Black Sea after many geological and geophysical studies such as bottom-simulation reflectors (BSR) and electromagnetic surveys. In this study, gas production simulations from two gas hydrate layers (6 m thick hydrate layer at 60 mbsf and 30 m-thick hydrate layer at 140 mbsf above BSR at 350 mbsf) at the same locations with approximately 50% hydrate saturation in the Danube Fan of the Black Sea were run with depressurization method separately at 2 MPa, 3 MPa, 4 MPa, 5 MPa, and 6 MPa by using HydrateResSim numerical simulators. Moreover, different production tests strategies were suggested in this region.
Subject Keywords
Gas hydrate
,
Black sea
,
Danube fan
,
Depressurization
,
HydrateResSim
,
Simulation
URI
https://hdl.handle.net/11511/47684
Journal
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING
DOI
https://doi.org/10.1016/j.jngse.2017.04.011
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Numerical simulations of gas production from Class 1 hydrate and Class 3 hydrate in the Nile Delta of the Mediterranean Sea
MEREY, ŞÜKRÜ; Longinos, Sotirios Nik (Elsevier BV, 2018-04-01)
Gas hydrate reservoirs are considered as near-future energy resources in the world. As well as the many places in the world, there is also gas hydrate potential in the Mediterranean Sea. In this study, by using the literature data, it was aimed to understand whether the Mediterranean Sea includes necessary parameters for producible gas hydrate reservoirs. It was shown that the Mediterranean Sea contains all of these parameters (source gas, appropriate pressure and temperature, coarse sand potential, etc.). ...
Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers
Longinos, Sotirios Nik.; Longinou, Dionisia Dimitra; Myrzakhmetova, Nurbala; Akimbayeva, Nazgul; Zhursumbaeva, Mariamkul; Abdiyev, Kaldibek; Toktarbay, Zhexenbek; Parlaktuna, Mahmut (2022-07-01)
Heat generation during gas hydrate formation is an important problem because it reduces the amount of water and gas that become gas hydrates. In this research work, we present a new design of an impeller to be used for hydrate formation and to overcome this concern by following the hydrodynamic literature. CH4 hydrate formation experiments were performed in a 5.7 L continuously stirred tank reactor using a butterfly turbine (BT) impeller with no baffle (NB), full baffle (FB), half baffle (HB), and surface b...
Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions
Merey, Sukru; Sınayuç, Çağlar (2016-02-01)
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4 similar to 80-99.9%) source. In this study, by using the literature seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, it was estimated that up to 71.8 (...
Experimental set-up design for gas production from the Black Sea gas hydrate reservoirs
Merey, Sukru; Sınayuç, Çağlar (2016-07-01)
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4 similar to 80-99.9%) source. In this study, by using the literature seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method ...
Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea
MEREY, ŞÜKRÜ; Longinos, Sotirios Nik (2018-09-01)
Gas seepages are commonly observed in marine environment. Especially, gas seepages due to anthropogenic gas hydrate dissociation are big concerns recently. In the Eastern Mediterranean Sea, Thessaloniki mud volcano was detected. Gas hydrate stability conditions in this mud volcano is very fragile. For this reason, in this study, gas seepages were predicted by using HydrateResSim at different seafloor temperature increments varying from 1 to 5 degrees C and different sediment permeability values varying from...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. MEREY and Ç. Sınayuç, “Numerical simulations for short-term depressurization production test of two gas hydrate sections in the Black Sea,”
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING
, pp. 77–95, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47684.