Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CELL CYCLE-DEPENDENT REGULATION OF CXXC5 SYNTHESIS
Download
Thesis Final_Öykü Deniz Demiralay.pdf
Date
2022-8-22
Author
Demiralay, Öykü Deniz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
214
views
76
downloads
Cite This
17β-estradiol (E2) is the main estrogen in circulation and has many physiological effects on various tissues, including the mammary tissue. CXXC5 is an estrogen-responsive gene product that binds to nonmethylated CpG dinucleotides on DNA. CXXC5 synthesis shows fluctuation in the cell cycle. This led to our prediction that the level of CXXC5 synthesis is regulated through the cell cycle. To test this prediction, I investigated the synthesis of CXXC5 in cell cycle-synchronized cells for every 6h up to 36h. I found that the level of CXXC5 synthesis shows alterations with the cell cycle. To investigate cell cycle-dependent expression and/or synthesis of CXXC5, I in this thesis established experimental conditions and protocols. These findings lay the foundations for future studies that aim to further delve into mechanisms of CXXC5 expression, synthesis, and degradation in a cell cycle-dependent manner.
Subject Keywords
Estrogen, Estrogen Receptor, CXXC5, Cell Cycle
URI
https://hdl.handle.net/11511/98645
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Functional importance of CXXC5 in E2-driven cellular proliferation
Razizadeh, Negin; Muyan, Mesut; Department of Biology (2019)
17β-estradiol (E2) as the main circulating estrogen hormone has an important role in the regulation of various tissues including mammary tissue. E2 effects target tissue functions by binding to the nuclear receptors, ERα and β. ERs regulate the expression of target genes. Previous studies conducted in our laboratory indicate that one of these estrogen responsive genes is CXXC5 which is regulated by ERα. CXXC5 has a highly conserved zinc-finger CXXC domain, which makes it a member of zinc-finger CXXC domain ...
The regulation of the CXXC5 gene expression
Yaşar, Pelin; Muyan, Mesut; Department of Molecular Biology and Genetics (2021-1-19)
17β-estradiol (E2) is the main circulating estrogen hormone in the body and is involved in the physiological and pathophysiological regulation of various tissue notably mammary tissue functions. E2 is responsible for cellular proliferation, differentiation, and/or death in target tissues. Our previous microarray studies suggested that expression of CXXC5 is regulated by E2-ERα through ERE-dependent signaling pathway and I verified that the CXXC5 transcript levels are augmented in response to E2. As a member...
Molecular mechanism of estrogen-estrogen receptor signaling.
Yaşar, P; Ayaz, G; User, Sd; Güpür, G; Muyan, Mesut (2016-12-05)
17 beta-Estradiol (E2), as the main circulating estrogen hormone, regulates many tissue and organ functions in physiology. The effects of E2 on cells are mediated by the transcription factors and estrogen receptor (ER)alpha and ER beta that are encoded by distinct genes. Localized at the pen-membrane, mitochondria, and the nucleus of cells that are dependent on estrogen target tissues, the ERs share similar, as well as distinct, regulatory potentials. Different intracellular localizations of the ERs result ...
Structural and functional characterization of the CXXC-type zinc finger protein 5 (CXXC5)
Ayaz Şen, Gamze; Muyan, Mesut; Department of Biology (2018)
Estrogen hormones, particularly 17β-estradiol (E2), are involved in the regulation of physiological and pathophysiological functions of many organs and tissues including breast tissue. The expression of CXXC type zinc finger protein 5 (CXXC5) gene is regulated by E2 through estrogen receptor α. Due to a highly conserved zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of ZF-CXXC family, which binds to non-methylated CpG dinucleotides of transcriptionally active DNA regions. This binding...
Establishment of cell lines with inducible expression OF shRNA for an estrogen responsive gene
Karakaya, Burcu; Beklioğlu, Meryem; Department of Biology (2018)
Estrogen hormones, primarily 17β-estradiol (E2) as the primary circulating estrogen, are involved in the homeodynamic regulation of various tissues/organs including mammary gland within which estrogen receptor α (ERα) conveys E2 signaling. The binding of E2 to ERα activates the receptor to regulate estrogen responsive gene expressions. Previous microarray and gene expression studies of our laboratory indicate that CXXC5 is an estrogen responsive gene regulated by ERα. Our ongoing studies also indicate that ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. D. Demiralay, “CELL CYCLE-DEPENDENT REGULATION OF CXXC5 SYNTHESIS,” M.S. - Master of Science, Middle East Technical University, 2022.