FABRICATION OF MAGNETIC BIOACTIVE GLASS NANOPARTICLES

2022-8-18
Taşar, Cansu
Different compositions of bioactive glass nanoparticles have been investigated for various applications, including cancer treatment, drug delivery, bone regeneration, etc. However, targeting of bioactive glass nanoparticles to desired tissues still remains to be a challenge. In this research, sol-gel synthesized bioactive glass and superparamagnetic iron oxide nanoparticles (SPIONs) were combined using two different approaches to obtain magnetic bioactive glass nanoparticle composites. In the first approach SPIONs were embedded into the bioactive glass nanoparticles (SEBG), and in the second approach SPIONs were deposited onto them as a thin shell (SDBG). The dimensions of the nanoparticles were calculated to be 180±9 and 420±10nm for SEBG and SDBG, respectively. The magnetizations of the nanoparticles were measured to be 4 and 9 emu/g for SEBG and SDBG, respectively. In vitro bioactivity experiments showed hydroxyapatite formation on both nanoparticles after soaking them in simulated body fluid (SBF) for 14 days. Additionally, bone cells proliferated and remained viable up to 7 days of culture in vitro upon their interaction with SEBG and SDBG nanoparticles. Similar viability results were also observed once experiments were carried out in the presence of 0.4T external static magnetic field to better mimic cellular response under magnetic targeting. Cumulatively, these results demonstrated that the synthesized magnetic bioactive glass nanoparticles were superparamagnetic, promoted bone cell viability independent of the presence of magnetic field and exhibited bioactive properties.

Suggestions

Investigation of in vitro cytotoxic effects of heparin coated iron oxide nanoparticles combined with tpp-dca on human hepatocellular carcinoma cell line HEPG2
Saraç, Başak Ezgi; Güray, Nülüfer Tülün; Volkan, Mürvet; Department of Biology (2018)
Nanotechnology in medicine involves the applications of nanoparticles and one of the rising field is cancer nanotechnology, which has been increasingly used in cancer diagnostics, imaging, and therapeutic drug delivery. The advantage of the use of the nanoparticles is that, they can be designed to be specific for tumor tissue. This allows increased drug delivery efficiency and reduced off-target toxicities. Iron oxide nanoparticles used in this study are smaller than 100 nm but still it gives an enhanced su...
Targeted delivery of CPG-oligodeoxynucleotide to breast cancer cells by poly-amidoamine dendrimer-modified magnetic nanoparticles
Taghavi Pourianazar, Negar; Gündüz, Ufuk; Gündüz, Güngör; Department of Biotechnology (2016)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release
Yaylaoglu, MB; Korkusuz, P; Ors, U; Korkusuz, F; Hasırcı, Vasıf Nejat (1999-04-01)
This study was carried out to develop a calcium phosphate-gelatin composite implant that would mimic the structure and function of bone for use in filling voids or gaps and to release bioactive compounds like drugs, growth hormones into the implant site to assist healing. XDS analysis of the synthesized calcium phosphate revealed a calcium to phosphorus molar ratio of ca. 2.30, implying a less erodible material than hydroxyapatite (1.67). Release of the antibiotic gentamicin from the implant was with a burs...
Use of nanoscale-delivery systems in tissue/organ regeneration
Fathi Achachelouei, Milad; Keskin, Dilek; Tezcaner, Ayşen (Elsevier Science, Oxford/Amsterdam , 2020-04-01)
iomaterials for Organ and Tissue Regeneration: New Technologies and Future Prospects examines the use of biomaterials in applications related to artificial tissues and organs. With a strong focus on fundamental and traditional tissue engineering strategies, the book also examines how emerging and enabling technologies are being developed and applied. Sections provide essential information on biomaterial, cell properties and cell types used in organ generation. A section on state-of-the-art in organ regenera...
Novel triazolothiadiazines act as potent anticancer agents in liver cancer cells through Akt and ASK-1 proteins
Aytac, Peri S.; Durmaz, Irem; Houston, Douglas R.; Atalay, Rengül; TOZKOPARAN KÖPRÜCÜ, BİRSEN (2016-02-15)
Newly designed triazolothiadiazines incorporating with structural motifs of nonsteroidal analgesic anti-inflammatory drugs were synthesized and screened for their bioactivity against epithelial cancer cells. Compounds with bioactivities less then similar to 5 mu M (IC50) were further analyzed and showed to induce apoptotic cell death and SubG(1) cell cycle arrest in liver cancer cells. Among this group, two compounds (1g and 1h) were then studied to identify the mechanism of action. These molecules triggere...
Citation Formats
C. Taşar, “FABRICATION OF MAGNETIC BIOACTIVE GLASS NANOPARTICLES,” M.S. - Master of Science, Middle East Technical University, 2022.