EXTRACTION OF INTERPRETABLE DECISION RULES FROM BLACK-BOX MODELS FOR CLASSIFICATION TASKS

Download
2022-8-31
GALATALI, EGEMEN BERK
In this work, we have proposed a new method and ready to use workflow to extract simplified rule sets for a given Machine Learning (ML) model trained on a classifi- cation task. Those rules are both human readable and in the form of software code pieces thanks to the syntax of Python programming language. We have inspired from the power of Shapley Values as our source of truth to select most prominent features for our rule sets. The aim of this work to select the key interval points in given data in order to extract if-then rule sets representing the black box models. We are able to generate rules that can mimic four different ML models on three datasets and one Deep Learning model on stock price dataset. We have evaluated promising similarity scores (around 90%) between the extracted rules and the ML models.

Suggestions

Deep Learning-Based Hybrid Approach for Phase Retrieval
IŞIL, ÇAĞATAY; Öktem, Sevinç Figen; KOÇ, AYKUT (2019-06-24)
We develop a phase retrieval algorithm that utilizes the hybrid-input-output (HIO) algorithm with a deep neural network (DNN). The DNN architecture, which is trained to remove the artifacts of HIO, is used iteratively with HIO to improve the reconstructions. The results demonstrate the effectiveness of the approach with little additional cost.
Feature Dimensionality Reduction with Variational Autoencoders in Deep Bayesian Active Learning
Ertekin Bolelli, Şeyda (2021-06-09)
Data annotation for training of supervised learning algorithms has been a very costly procedure. The aim of deep active learning methodologies is to acquire the highest performance in supervised deep learning models by annotating as few data points as possible. As the feature space of data grows, the application of linear models in active learning settings has become insufficient. Therefore, Deep Bayesian Active Learning methodology which represents model uncertainty has been widely studied. In this paper, ...
A Trie-structured Bayesian Model for Unsupervised Morphological Segmentation
Kurfalı, Murathan; Ustun, Ahmet; CAN BUĞLALILAR, BURCU (2017-04-23)
In this paper, we introduce a trie-structured Bayesian model for unsupervised morphological segmentation. We adopt prior information from different sources in the model. We use neural word embeddings to discover words that are morphologically derived from each other and thereby that are semantically similar. We use letter successor variety counts obtained from tries that are built by neural word embeddings. Our results show that using different information sources such as neural word embeddings and letter s...
Cross-modal Representation Learning with Nonlinear Dimensionality Reduction
KAYA, SEMİH; Vural, Elif (2019-08-22)
In many problems in machine learning there exist relations between data collections from different modalities. The purpose of multi-modal learning algorithms is to efficiently use the information present in different modalities when solving multi-modal retrieval problems. In this work, a multi-modal representation learning algorithm is proposed, which is based on nonlinear dimensionality reduction. Compared to linear dimensionality reduction methods, nonlinear methods provide more flexible representations e...
A Bayesian Approach to Learning Scoring Systems
Ertekin Bolelli, Şeyda (2015-12-01)
We present a Bayesian method for building scoring systems, which are linear models with coefficients that have very few significant digits. Usually the construction of scoring systems involve manual efforthumans invent the full scoring system without using data, or they choose how logistic regression coefficients should be scaled and rounded to produce a scoring system. These kinds of heuristics lead to suboptimal solutions. Our approach is different in that humans need only specify the prior over what the ...
Citation Formats
E. B. GALATALI, “EXTRACTION OF INTERPRETABLE DECISION RULES FROM BLACK-BOX MODELS FOR CLASSIFICATION TASKS,” M.S. - Master of Science, Middle East Technical University, 2022.