Güneşdoğdu, Ali Nuri
Collaborative robots, a.k.a cobots, are industrial robotic manipulators that have no built-in capabilities for social human-robot interaction (HRI). In the thesis, we implemented breathing for a cobot as a social behavior inspired by the secondary action animation principle. We automatically generated breathing of a cobot as HRI behavior with its waveform borrowed from human breathing; its amplitude and frequency are parametrized. We conducted a user study to measure the effect of parameters of breathing behavior on a collaborative task. During the study, we collected the task completion time to evaluate the task performance and velocities and accelerations of the hand of subjects to evaluate the task quality. We measured HRI quality using the Godspeed questionnaire. The analysis showed that a frequency similar to a human’s breathing positively impacts task performance and improves task quality; however, it did not significantly affect HRI quality. Besides, changing the amplitude of the breathing did not affect any metrics.


Designing Social Cues for Collaborative Robots: The Role of Gaze and Breathing in Human-Robot Collaboration
Terzioglu, Yunus; Mutlu, Bilge; Şahin, Erol (2020-01-01)
In this paper, we investigate how collaborative robots, or cobots, typically composed of a robotic arm and a gripper carrying out manipulation tasks alongside human coworkers, can be enhanced with HRI capabilities by applying ideas and principles from character animation. To this end, we modified the appearance and behaviors of a cobot, with minimal impact on its functionality and performance, and studied the extent to which these modifications improved its communication with and perceptions by human collab...
Bilaloğlu, Cem; Turgut, Ali Emre; Şahin, Erol; Department of Mechanical Engineering (2022-1-13)
This thesis introduces Kobot -- an extensible heterogeneous swarm robot platform. Kobot platform uses a common hardware and software architecture based on off-the-shelf components, 3-D printing, and open-source software that evolves with state of the art. Robots built using this common architecture range from wheeled to flying robots and formed a heterogeneous swarm. The common architecture enabled developing and testing systems for the lightweight flying robots on resourceful ground robots. As a result, Ko...
Human aware navigation of a mobile robot in crowded dynamic environments
Hacınecipoğlu, Akif; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2019)
As mobile robots start operating in dynamic environments crowded with humans, human-aware and human-like navigation is required to make these robots navigate safely, efficiently and in socially compliant manner. People can navigate in an interactive and cooperative fashion so that, they are able to find their path to a destination even if there is no clear path leading to it. This is clearly a dexterity of humans. But the mobile robots which have to navigate in such environments lack this feature. Even perf...
Design of a variable five-axes adjustable configuration robot manipulator
YUCEL, AS; Ersak, Aydın (1994-04-14)
A robot manipulator design is presented in this paper supplying a few kinematical configurations in a single structure which is in the mean time, reconfigurable for given tasks and hence making the level of flexibility and adaptability much higher for changing working environments
Design and implementation of a device to control a robotic arm by EMG signal
Kandemir, Görkem; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2013)
In this study, an electromyogram (EMG)based human machine interface system is designed and implemented. System acquires EMG signals and processes them to generate commands to control a robotic arm. Different signal processing methodologies are investigated, realized, and compared. The thesis study includes design and implementation of an 8 channels electromyogram data acquisition system which is used to record raw EMG signals from operator’s muscles. The system transfers raw EMG data to control software via...
Citation Formats
A. N. Güneşdoğdu, “GENERATION AND ANALYSIS OF “BREATHING” AS AN HRI BEHAVIOR ON A COBOT,” M.S. - Master of Science, Middle East Technical University, 2022.