Investigation of effect of mass distribution on wing flutter by fluid-structure interaction analysis

Download
2022-8
Celen, Furkan
In this study, a closely coupled fluid-structure interaction analysis is carried out in order to investigate the effect of mass distribution on wing flutter. A commercial software is used to carry out and couple the structural and computational fluid dynamics analyses. The validation of the analysis procedure is realized by simulating the AGARD 445.6 wing flutter experiment and comparing the simulation results with the experimental ones. The simulation results agreed well with the experimental results. The change in the aeroelastic behavior of the test wing is observed by adding a point mass to different positions within the test wing. In addition, a high altitude long endurance unmanned air vehicle wing is created in order to investigate the variation of the flutter speed as the center of gravity changes in chord-wise direction through the use of a point pass.

Suggestions

Mathematical Modeling of Turbulent Flows of Newtonian Fluids in a Concentric Annulus with Pipe Rotation
SORGUN, MEHMET; Aydın, İsmail; ÖZBAYOĞLU, Evren; SCHUBERT, J J (2012-03-01)
In this study, a mathematical model is proposed to predict flow characteristics of Newtonian fluids inside a concentric horizontal annulus. A numerical solution, including pipe rotation, is developed for calculating frictional head losses in concentric annuli for turbulent flow. Navier-Stokes equations are numerically solved using the finite differences technique to obtain the velocity field. Experiments with water are performed in a concentric annulus with and without pipe rotation. Average fluid velocitie...
ASSESSMENT OF RPIM SHAPE PARAMETERS FOR SOLUTION ACCURACY OF 2D GEOMETRICALLY NONLINEAR PROBLEMS
BOZKURT, ÖMER YAVUZ; KANBER, BAHATTİN; Aşık, Mehmet Zülfü (World Scientific Pub Co Pte Lt, 2013-06-01)
This study discussed the effects of shape parameters on the radial point interpolation method (RPIM) accuracy in 2D geometrically nonlinear problems. Four finite deformation problems with compressible Neo-Hookean material are numerically solved with the RPIM algorithm using the multi-quadric (MQ) radial basis function. Both regular and irregular node distributions are used. Their displacements and Cauchy stresses are compared for different values of shape parameters and monomial basis. It is found that the ...
Aeroelastic Analysis of a Flapping Blow Fly Wing
Beker, Can; Turgut, Ali Emre; ARIKAN, KUTLUK BİLGE; Kurtuluş, Dilek Funda (2020-06-01)
In this study, a 3D model of the bio-inspired blowfly wing Callphere Erytrocephala is created and aeroelastic analysis is performed to calculate its aerodynamical characteristics by use of numerical methods. To perform the flapping motion, a sinusoidal input function is created. The scope of this study is to perform aeroelastic analysis by synchronizing computational fluid dynamics (CFD) and structural dynamic analysis models and to investigate the unsteady lift formation on the aeroelastic flapping wing fo...
Investigation of photovoltaic properties of amorphous InSe thin film based Schottky devices
Yilmaz, K.; Parlak, Mehmet; Ercelebi, C. (IOP Publishing, 2007-12-01)
In this study, device behavior of amorphous InSe thin films was investigated through I-V, C-V and spectral response measurements onto SnO2/p-InSe/metal Schottky diode structures. Various metal contacts such as Ag, Au, Al, In and C were deposited onto amorphous p-InSe films by the thermal evaporation technique. The best rectifying contact was obtained in a SnO2/p-InSe/Ag Schottky structure from I-V measurements, while the Au contact had poor rectification. Other metal contacts (Al, In and C) showed almost oh...
Investigation of the Applicability of AASHTO LRFD Live Load Distribution equations for Integral Bridge Substructures
Erhan, Semih; Dicleli, Murat (SAGE Publications, 2009-08-01)
In this study, applicability of the AASHTO LRFD girder live load distribution equations (LLDEs) for integral bridge (IB) abutments and piles is investigated. For this Purpose, numerous 3-D and corresponding 2-D structural models of typical IBs are built and analyzed under AASHTO LRFD live load. In the analyses, the effect of various superstructure properties such as span length, slab thickness, girder spacing and stiffness are considered. The results from the 2-D and 3-D analyses are then used to calculate ...
Citation Formats
F. Celen, “Investigation of effect of mass distribution on wing flutter by fluid-structure interaction analysis,” M.S. - Master of Science, Middle East Technical University, 2022.