Investigating the effects of climate change on the surface runoff potential over Kızılırmak basin

2022-9-2
Barkış, Numan Burak
The aim of this study is to analyze the expected change in the surface runoff potential that will occur due to climate change in the Kızılırmak Basin until 2100. HBV hydrological model was run in this study to investigate the expected change in 3 sub-basins (SB 1535, SB 1541, and SB 1545) of Kızılırmak Basin. Total of 56 CMIP5-based GCM/RCM daily model datasets, downloaded from CORDEX EUR-11 at 0.110 spatial resolution and reflect RCP 8.5 emission scenario, were utilized. Among these model datasets, 10 of them were eliminated after a validation step performed using ERA5-Land precipitation and temperature dataset. Remaining 46 datasets are corrected for potential systematic biases in their mean values using ERA5-Land dataset-based historical temperature and precipitation simulations. Bias corrected datasets are utilized in all HBV model-based simulations. After the parameters of HBV were calibrated utilizing historical runoff observations, obtained parameter sets were used in future simulations to investigate the expected changes in the surface runoff potential of 3 sub-basins between the years of 2021 and 2099. The results show HBV model simulations have very high consistency with the past observations that NSE values for the daily simulations are 0.87, 0.66, and 0.81 for the three sub-basins listed above, respectively. Overall, the current surface runoff potential is expected to decrease in all 3 sub-basins between 2061 and 2099, where the rate of the decrease will be between 34% and 57% of the current multi-decadal averages.

Suggestions

Identifying impacts of climate change on water resources using CMIP6 simulations: Havran basin case
Çaktu, Yasemin; Yücel, İsmail; Fıstıkoğlu, Okan; Department of Earth System Science (2022-9-2)
This study aims to investigate climate change effect on precipitation, temperature and discharge in Havran basin which has thousands of decares of agricultural lands. Changes in precipitation and temperature were determined using 10 global climate models (GCMs) for total precipitation and 13 GCMs for average temperature from Coupled Model Intercomparison Project Phase 6 (CMIP6) for the historical period, SSP2-4.5 (moderate-case) and SSP5-8.5 (worst-case) scenarios. Both station observations and ERA5-Land re...
Assessing the impact of climate change on Mogan and Eymir Lakes' levels in Central Turkey
Yagbasan, Ozlem; Yazıcıgil, Hasan (2012-05-01)
Global warming is likely to have significant effect on the hydrological cycle. Some parts of the world may see significant reductions in precipitation or major alterations in the timing of wet and dry seasons. Climate change is one of the serious pressures facing water resources and their management over the next few years and decades. As part of the southern belt of Mediterranean Europe, Turkey is highly vulnerable to anticipated climate change impacts. The changes in global climate will seriously affect i...
Assessment of changes in climate indices of the mediterranean climate region of Turkey
Çetinkaya , İzem; Yücel, İsmail; Department of Civil Engineering (2020-10-28)
As a consequence of climate change, frequency and intensity changes in extreme weather events have occurred. One of the most vulnerable regions of the world that is affected by the climate change is the Mediterranean region. Turkey as a Mediterranean country has a great importance to investigate the changes in climate behavior. 57 stations from Mediterranean climate region of Turkey have been selected as the study area for this thesis. This study aims to assess the climate indices that carry the valua...
Evaluating a mesoscale atmosphere model and a satellite-based algorithm in estimating extreme rainfall events in northwestern Turkey
Yücel, İsmail (Copernicus GmbH, 2014-01-01)
Quantitative precipitation estimates are obtained with more uncertainty under the influence of changing climate variability and complex topography from numerical weather prediction (NWP) models. On the other hand, hydrologic model simulations depend heavily on the availability of reliable precipitation estimates. Difficulties in estimating precipitation impose an important limitation on the possibility and reliability of hydrologic forecasting and early warning systems. This study examines the performance o...
Climate change and future proofing infrastructure: Etimesgut, Ankara case study
Oruç, Sertaç; Yılmaz, Ayşen; Yücel, İsmail; Department of Earth System Science (2018)
This study examines the potential impacts of climate change and land use/cover change; investigates how to incorporate these changes into urban stormwater network design. Rainfall analysis with stationary and nonstationary approach for observed and future conditions is performed for the (1950-2015 period) observed data and projections (2015-2098 period) for Ankara province, Turkey. Daily projections are disaggregated to finer scales and used for future period the analysis. Nonstationary Generalized Extreme ...
Citation Formats
N. B. Barkış, “Investigating the effects of climate change on the surface runoff potential over Kızılırmak basin,” M.S. - Master of Science, Middle East Technical University, 2022.