Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Decellularized Bone Extracellular Matrix-Coated Electrospun PBAT Microfibrous Membranes with Cell Instructive Ability and Improved Bone Tissue Forming Capacity
Date
2022-09-01
Author
Karakaya, Ece
Erdoğan, Yaşar Kemal
Arslan, Tugba Sezgin
Arslan, Yavuz Emre
Odabaş, Sedat
Ercan, Batur
Emregül, Emel
Derkuş, Burak
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
0
downloads
Cite This
Current approaches to develop bone tissue engineering scaffolds have some limitations and shortcomings. They mainly suffer from combining mechanical stability and bioactivity on the same platform. Synthetic polymers are able to produce mechanically stable sturctures with fibrous morphology when they are electrospun, however, they cannot exhibit bioactivity, which is crucial for tissue engineering and regenerative medicine. One current strategy to bring bioactivity in synthetic materials is to combine extracellular matrix (ECM)-sourced materials with biologically inert synthetic materials. ECM-sourced materials without any modifications are mechanically unstable; therefore, reinforcing them with mechanically stable platforms is indispensable. In order to overcome this bifacial problem, we have demonstrated that poly(butylene adipate-co-terephthalate) (PBAT) electrospun microfibrous membranes can be successfully modified with decellularized bone ECM to endow fibers with bioactive hydrogel and mimic natural micro-features of the native bone tissue. The developed structures have been shown to support osteogenesis, confirmed by histochemical staining and gene expression studies. Furthermore, ECM-coated PBAT fibers, when they were aligned, supplied an improved level of osteogenesis. The strategy demonstrated can be adapted to any other tissues, and the emerging microfibrous, mechanically stable, and bioactive materials can find implications in the specific fields of tissue engineering and regenerative medicine.
Subject Keywords
bone tissue engineering
,
decellularization
,
electrospinning
,
extracellular matrix
,
microfibrous membrane
,
poly(butylene adipate-co-terephthalate)
,
CONTROLLED-RELEASE
,
SCAFFOLDS
,
FIBERS
,
HYDROGELS
,
ALIGNMENT
,
MODEL
URI
https://hdl.handle.net/11511/99855
Journal
MACROMOLECULAR BIOSCIENCE
DOI
https://doi.org/10.1002/mabi.202200303
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering
Yedekçi, Buşra; Tezcaner, Ayşen; Evis, Zafer (2022-01-01)
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolyme...
Improvement of bioactivity with dual bioceramic incorporation to nanofibrous PCL scaffolds
Altunordu, Gercem; Tezcaner, Ayşen; Evis, Zafer; Keskin, Dilek (2023-03-01)
Bone tissue injuries, diseases or related clinical interventions require bone tissue engineering (BTE) approaches for regeneration of large bone defects, especially for compromised situations. Most BTE applications in literature focused on composites of polymers with a single type of bioceramic. However, native bone matrix has various inorganic components. Accordingly, this study aimed to investigate the use of dual bioceramics in BTE scaffolds prepared by wet-electrospinning of Poly-caprolactone (PCL) and ...
3D Porous Composite Scaffold of PCL-PEG-PCL/Sr2+ and Mg2+ Ions Co-Doped Borate Hydroxyapatite for Bone Tissue Engineering
Yedekçi, Buşra; Evis, Zafer; Tezcaner, Ayşen; Department of Engineering Sciences (2021-9-6)
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped hydroxyapatite (HA) that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HAs were s...
Development and characterization of silk fibroin and citrus pectin based scaffolds for bone tissue engineering
Ataol, Sibel; Tezcaner, Ayşen; Akdağ, Akın; Department of Biomedical Engineering (2014)
Current strategies of tissue engineering aim to design and develop biologically, physicochemically and mechanically proper scaffolds. Natural polymers are gaining interest in applications since they have already many roles in biochemical pathways and have proper mechanical properties. The objective of this thesis is to develop natural silk fibroin (SF) and citrus pectin (PEC) based three-dimensional porous scaffolds for bone tissue engineering applications. Additionally, we aimed to synthesize nano calcium ...
Nanobiomaterials: a review of the existing science and technology, and new approaches
Hasırcı, Vasıf Nejat; Zorlutuna, P.; Ndreu, A.; Yilgor, P.; Basmanav, F. B.; Aydin, E. (2006-01-01)
Nanotechnology has made great strides forward in the creation of new surfaces, new materials and new forms which also find application in the biomedical field. Traditional biomedical applications started benefiting from the use nanotechnology in an array of areas, such as biosensors, tissue engineering, controlled release systems, intelligent systems and nanocomposites used in implant design. In this manuscript a review of developments in these areas will be provided along with some applications from our la...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Karakaya et al., “Decellularized Bone Extracellular Matrix-Coated Electrospun PBAT Microfibrous Membranes with Cell Instructive Ability and Improved Bone Tissue Forming Capacity,”
MACROMOLECULAR BIOSCIENCE
, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/99855.