Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies
Date
2014-06-01
Author
Tasar, Seyda
Kaya, Fatih
Ozer, Ahmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
128
views
0
downloads
Cite This
In this study, the biosorption of Pb(II) ions onto peanut shells from an aqueous solution was studied in a batch system as a function of temperature, pH of the solution, contact time, initial concentration of Pb(II) ions, and peanut shell concentration. It was determined that the biosorption capacity of the peanut shells decreased as the temperature was increased. Several kinetic models were used to determine the biosorption mechanism. It was determined that the biosorption system obeyed the pseudo-second-order kinetic model by taking into account the correlation coefficient value. Calculated activation energy value (E-a) was 33 kJ/mol and indicates that physical biosorption mechanisms occurred. This value indicated that physical biosorption mechanisms occurred. The linear forms of the Freundlich and Langmuir isotherms were applied to the biosorption data, and it was concluded that the Langmuir isotherm gave a better fit than the Freundlich model based on the values of the correlation coefficients (R-2). The maximum Langmuir biosorbent capacity (q(max)) was approximately 39 mg/g. The thermodynamic parameters were calculated for the process by which Pb(II) ions were removed by the peanut shells. According to these parameters, it was observed that the biosorption of Pb( II) ions by the peanut shells is exothermic and spontaneous. (C) 2014 Elsevier Ltd. All rights reserved.
Subject Keywords
Lead(II)
,
Peanut shells
,
Biosorption
,
Thermodynamic and kinetic parameters
URI
https://hdl.handle.net/11511/100710
Journal
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
DOI
https://doi.org/10.1016/j.jece.2014.03.015
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Optimising clarification of carrot juice by bacterial crude pectinase
Uzuner, Sibel; Çekmecelioğlu, Deniz (2015-12-01)
This study was undertaken to search for potential use of crude bacterial pectinase enzyme produced from Bacillus subtilis grown on hazelnut shell hydrolysate in clarification of carrot juice and to optimize the enzyme load, pH and time using the Box-Behnken response surface methodology (RSM). The carrot juice was treated with the crude pectinase enzyme (5.60 U mL(-1)) at different concentrations (0.1-0.5%), pH (4-7), and time (2-6 h). The obtained enzyme was also compared with commercial fungal pectinase at...
Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation
Kula, Ibrahim; Ugurlu, Mehmet; Karaoglu, M. Hamdi; Celik, Ali (2008-02-01)
This study is aimed to remove Cd(II) ions from aqueous solutions by adsorption. As adsorbent, activated carbon prepared from olive stone, an agricultural solid by-product was used. Different activating agent (ZnCl2) amounts and adsorbent particle size were studied to optimize adsorbent surface area. The adsorption experiments were conducted at different parameters such as, adsorbent dose, temperature, equilibrium time and pH. According to the experiments results, the equilibrium time, optimum pH, adsorbent ...
Nanoceria-Supported Ruthenium(0) Nanoparticles: Highly Active and Stable Catalysts for Hydrogen Evolution from Water
Demir Arabacı, Elif; Önal, Ahmet Muhtar (American Chemical Society (ACS), 2018-02-21)
Ruthenium(0) nanoparticles supported on nanoceria (Ru-0/CeO2) were prepared by reduction of Ru3+ ions on the surface of ceria using aqueous solution of NaBH4. The Ru-0/CeO2 samples were characterized by advanced analytical tools and employed as electrocatalysts on the glassy carbon electrode (GCE) in hydrogen evolution from water. The GCE, modified by Ru-0/CeO2 (1.86 wt % Ru), provides an incredible electrocatalytic activity with a high exchange current density of 0.67 mA.cm(-2), low overpotential of 47 mV ...
Sorption of radioactive cesium and barium ions onto solid humic acid
Celebi, O.; Kilikli, A.; ERTEN, HASAN NİYAZİ (Elsevier BV, 2009-09-15)
In this study, the sorption behavior of two important fission product radionuclides ((137)Cs and (140)Ba) onto sodium form of insolubilized humic acid (INaA) were investigated as a function of time, cation concentration and temperature, utilizing the radiotracer method. The sorption processes are well described by both Freundlich and Dubinin-Radushkevich type isotherms. Thermodynamic constants such as: free energy (Delta G(ads)), enthalpy (Delta H(ads)), entropy (Delta S(ads)) of adsorption were determined....
Surfactant modified zinc borate synthesis and its effect on the properties of PET
Baltaci, Berk; ÇAKAL, GAYE ÖZGÜR; Bayram, Göknur; Eroglu, Inci; Özkar, Saim (Elsevier BV, 2013-08-01)
Zinc borate was prepared from the reaction of zinc oxide and boric acid in the absence or presence of cumene terminated poly(styrene-co-maleic anhydride), PSMA, added as a surfactant at varying concentrations (0.1-1 wt.% of water) to the reaction medium to investigate its effect on the growth and agglomeration of particles during reaction. Synthesized zinc borates were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in comparison to unmodifie...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Tasar, F. Kaya, and A. Ozer, “Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies,”
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
, vol. 2, no. 2, pp. 1018–1026, 2014, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100710.