GPU-Accelerated Shooting and Bouncing Ray Method for Inverse Synthetic Aperture Radar Imaging

Bural, Berk
Kuzuoğlu, Mustafa
The most time-consuming part of the conventional Shooting and Bouncing Ray (SBR) method is the ray tracing process, which increases the computation time because of the large number of ray tubes used to model the incident wave and the large number of triangles used to model the surface mesh. In this study, an accelerated SBR method is presented to reduce the computational burden. Acceleration is done both by reducing the amount of ray-triangle intersection tests with the help of octree decomposition of 3D mesh structure, and by parallelizing the ray tracing algorithm on GPU (graphics processing unit) in MATLAB. The proposed method is used to obtain the Inverse Synthetic Aperture Radar (ISAR) image of electrically-large complex objects. The numerical results are compared with those of a commercial software.
32nd International Conference on Radioelectronics (RADIOELECTRONICS)


Comparative evaluation of SAR image formation algorithms
Şahin, Halil İbrahim; Dural Ünver, Mevlüde Gülbin; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2010)
In the scope of this thesis, simulation-based analyses and comparative evaluation of Synthetic Aperture Radar (SAR) image formation techniques, namely Time Domain Correlation, Range Stacking, Range Doppler and Chirp Scaling algorithms, are presented. For this purpose, first, the fundamental concepts of SAR such as SAR geometry, resolution and signal properties are explained. A broadside SAR simulator that provides artificial raw data as an input to the algorithms is designed and implemented. Then, the mathe...
Comparative evaluation of ISAR processing algorithms
Tufan, Alper; Dural Ünver, Mevlüde Gülbin; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2012)
In this thesis, Inverse Synthtetic Aperture Radar image reconstruction techniques, named as Range Doppler, Back Projection, Polar Formatting, Multiple Signal Classification (MUSIC) and Time Frequency techniques are analysed and compared using simulations. Time Frequency techniques investigated in this thesis are Short Time Fourier Transform, Wigner-Ville Distribution, Smoothed Wigner-Ville Distribution and Choi-Williams Distribution. First, some fundamental concepts of ISAR, such as resolution, range profil...
Numerical and Experimental Investigation of Newtonian Flow around a Confined Square Cylinder
Tezel, Guler Bengusu; YAPICI, Kerim; Uludağ, Yusuf (Periodica Polytechnica Budapest University of Technology and Economics, 2019-01-01)
The confined flow of a Newtonian fluid around a square cylinder mounted in a rectangular channel was investigated both numerically and experimentally. Ratio between the pipe and channel height, the blockage ratio, is kept constant at 1/4. The flow variables including streamlines, vorticity and drag coefficients were calculated at 0 <= Re <= 50 using finite volume method. The velocity terms in the momentum equations are approximated by a higher-order and bounded scheme of Convergent and Universally Bounded I...
Radar cross section analysis by shooting and bouncing rays method
Çakır, Mustafa Kağan; Tokdemir, Turgut; Department of Engineering Sciences (2015)
In this study, a MATLAB code incorporating `Shooting and Bouncing Rays (SBR) Method` is developed for calculating Radar Cross Section (RCS) of complex shapes. The code can calculate ray paths, magnetic current sheets, incident and scattered electric fields and RCS in horizontal, vertical and cross polarizations. While reflection effects are calculated by SBR algorithm, diffraction effects due to edges and corners are handled by `Equivalent Edge Currents (EEC’s)`. Wave frequency, aspect angle and number of r...
Direction finding with a circularly rotated antenna
Koc, AT; Sen, E; Tanik, Y (2000-06-09)
In this work, a new algorithm for multiple emitter direction finding by using a single antenna moving along a circular trajectory is proposed. The problem is formulated by taking the Doppler frequency shift, caused by the movement of the antenna. into account, and by assuming that the information, hidden in the incoming signals, does not change in the observation duration. The proposed direction finding algorithm is, therefore, based on single snapshot processing and also on the linear prediction method dev...
Citation Formats
B. Bural, Ö. ÖZGÜN, A. E. YILMAZ, and M. Kuzuoğlu, “GPU-Accelerated Shooting and Bouncing Ray Method for Inverse Synthetic Aperture Radar Imaging,” presented at the 32nd International Conference on Radioelectronics (RADIOELECTRONICS), Koshice, Slovakya, 2022, Accessed: 00, 2022. [Online]. Available: