Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preparation of chabazite based Fenton-like heterogeneous catalyst and its organic micropollutant removal performance
Date
2023-04-01
Author
Ali, Mohsin
Dilek, Filiz Bengü
İpek Torun, Bahar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
Natural chabazite (CHA) is used for the first time as a heterogeneous catalyst in Fenton-like oxi- dation. Pretreatment techniques (NH4+-exchange, steam treatment, and Fe-exchange) were ap- plied to natural CHA to improve the available micropore and mesopore volume as well as to in- crease Fe-content. CHA samples were characterized by XRD, N2 adsorption, UV–Vis, SEM-EDX, ICP-OES, and MAS NMR to study the improvement after each pretreatment. Steam treatment at 675 °C and 20 kPa improved the mesopore volume of CHA, which enabled Fe3+ concentration to increase from 0.24 to 0.60 mmol Fe3+ g CHA−1 following the Fe-exchange. The Fe-exchanged CHA (Fe-CHA) was then tested for malathion oxidation. The effect of H2O2 and catalyst doses and pH on the degradation of malathion was investigated. Fenton-like oxidation was realized at a higher and wider pH range (pH 3–7) when compared to classical Fenton. A malathion removal between 20 and 81% was achieved depending on the initial malathion concentration (250–750 μg L−1), Fenton Reagents (H2O2 and Fe-CHA) concentrations (75–300 mg L−1 and 250–750 mg L−1, respectively) and pH (3–7). The metabolites of malathion were identified as malaoxon, desmethyl malaoxon and diethyl malate. A possible oxidation pathway was proposed, where desmethyl malaoxon and diethyl malate were identified as the secondary oxidation prod- ucts. Moreover, the performance of Fe-CHA was compared with commercially available synthetic zeolites of Fe-Ultra-stable Y and Fe-ZSM-5. Fe-CHA is found to be comparably effective as these synthetic zeolites, as well as providing substantially smaller sludge production when compared to classical Fenton.
URI
https://hdl.handle.net/11511/101605
Journal
Sustainable Chemistry and Pharmacy
DOI
https://doi.org/10.1016/j.scp.2022.100928
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Synthesis of polymer-supported TEMPO catalysts and their application in the oxidation of various alcohols
Tanyeli, Cihangir (2003-02-17)
We describe the synthesis of a recyclable polymer-supported TEMPO as a catalyst in the Anelli oxidation of various primary alcohols to afford the corresponding aldehydes in good yields. (C) 2003 Elsevier Science Ltd. All rights reserved.
Synthesis of new mediators for electrochemical nad/nadh recycling
Khalily, Mohammad Aref; Demir, Ayhan Sıtkı; Department of Chemistry (2011)
The synthesis of enantiopure compounds can be achieved by using dehydrogenases as biocatalysts. For instance, reduction reactions of prochiral compounds (ketones, aldehydes and nitriles) into chiral compounds can be achieved by dehydrogenases. These dehydrogenases are cofactor dependent where cofactor is Nicotinamide Adenin Dinucleotite having some restrictions that confines usage of dehydrogenases in organic synthesis including instability of cofactor in water and high cost. Therefore, suitable recycling m...
Synthesis of ferrocenyl quinolines
Zora, Metin (Elsevier BV, 2008-06-01)
A convenient one-pot synthesis of ferrocenyl-substituted quinolines via a molecular iodine-catalyzed reaction of ferrocenylimines with enolizable aldehydes is reported. First, nucleophilic addition of the in situ generated enol to ferrocenylimine produces beta-anilinopropionaldehyde, which then undergoes intramolecular Friedel-Crafts reaction to give dihydroquinoline derivative. Finally, subsequent dehydration and aerobic oxidation affords ferrocenyl quinolines.
Synthesis of a new thiophene derivative and its uses as an electrochromic device component
Yiğitsoy, Başak; Toppare, Levent Kamil; Department of Chemistry (2006)
2,5-Di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole (DTTP) was synthesized via reaction of 1,4-di(2-thienyl)-1,4-butanedione with p-toluidine in the presence of catalytical amount of p-toluenesulfonic acid (PTSA). Homopolymer P(DTTP) was achieved both by chemical and electrochemical techniques. Chemical polymerization of the monomer yielded a soluble polymer. The average molecular weight was determined by gel permeation chromatography (GPC) as Mn: 2.5x103 g/mol. The monomer was electrochemically polymerized in the p...
Synthesis of aromatic poly(pyridinium salt)s and their electrochromic properties
Keshtov, M. L.; UDUM, YASEMİN; Toppare, Levent Kamil; Kochurov, V. S.; Khokhlov, A. R. (Elsevier BV, 2013-05-15)
Synthesis of a series of new conjugated electrochromic polymeric pyridinium salts containing main-chain triphenylamine and their electrochromic properties were demonstrated. All polymers exhibit intense UV absorptions at 336-338 nm in DMF and 340-343 nm in thin film form and fluorescence centered at 410-438 nm in DMF and 460-461 nm in thin film form. The electrochromic properties of the films were investigated by electrochemical and spectroelectrochemical methods. Reversible redox signals with stable electr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ali, F. B. Dilek, and B. İpek Torun, “Preparation of chabazite based Fenton-like heterogeneous catalyst and its organic micropollutant removal performance,”
Sustainable Chemistry and Pharmacy
, vol. 31, pp. 100928–100928, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101605.