Synthesis of a new thiophene derivative and its uses as an electrochromic device component

Yiğitsoy, Başak
2,5-Di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole (DTTP) was synthesized via reaction of 1,4-di(2-thienyl)-1,4-butanedione with p-toluidine in the presence of catalytical amount of p-toluenesulfonic acid (PTSA). Homopolymer P(DTTP) was achieved both by chemical and electrochemical techniques. Chemical polymerization of the monomer yielded a soluble polymer. The average molecular weight was determined by gel permeation chromatography (GPC) as Mn: 2.5x103 g/mol. The monomer was electrochemically polymerized in the presence of LiClO4, NaClO4 (1:1) as the supporting electrolyte in acetonitrile. Copolymer of DTTP in the presence of EDOT was synthesized via potentiodynamic method in ACN/ NaClO4/LiClO4 (0.1 M) solvent-electrolyte couple. Structural characterizations of samples were carried out via 1H, 13C Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Electrochemical behaviors of monomer and polymers were determined by Cyclic Voltammetry (CV). The morphologies of the polymer films were examined by Scanning Electron Microscopy (SEM). Conductivities of the films were measured by four probe technique. Electrochromic and spectroelectrochemical behavior of the polymers coated on ITO glass electrode were investigated, and their ability of employment in device construction was examined. Spectroelectrochemistry analysis of P(DTTP) revealed an electronic transition at 428 nm corresponding to п п* transition with a band gap of 2.1 eV whereas P(DTTP-co-EDOT) revealed an electronic transition at 448 nm corresponding to п- п* transition with a band gap of 1.8 eV. Electrochromic investigations showed that P(DTTP) switches between greenish yellow and blue while P(DTTP-co-EDOT) was found to be multichromic, switching between red, yellow and blue. Switching time of the polymers was evaluated by a kinetic study upon measuring the percent transmittance (%T) at the maximum contrast point. Dual type polymer electrochromic devices (ECDs) based on P(DTTP) and P(DTTP-co-EDOT) with poly(3,4-ethylenedioxythiophene) (PEDOT) were constructed. Spectroelectrochemistry, electrochromic switching and open circuit stability of the devices were studied. They were found to have good switching times, reasonable contrasts and optical memories.


Synthesis, characterization and electrochromic properties of conducting copolymers of terephthalic acid bis-(thiophen-3-ylmethyl)thioester with thiophene and pyrrole and conducting polymer of 1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1h-pyrrole
Türkarslan, Özlem; Toppare, Levent Kamil; Department of Chemistry (2006)
Terephthalic acid bis-(thiophen-3-ylmethyl)thioester (TTMT) was synthesized via the reaction of thiophen-3-ylmethanethiol with terephthaloyl dichloride. Nuclear magnetic resonance (1H-NMR) and Fourier transform infrared (FTIR) spectroscopies were utilized for the characterization of the monomer. This 3-functionalized thiophene monomer was polymerized in the presence of thiophene (Th) and pyrrole (Py) upon constant potential application in acetonitrile/tetrabutylammonium tetrafluoroborate (TBAFB). The result...
Synthesis of block conducting copolmers of cholesteryl functionalized thiophene and their use in the immobilization of cholesterol oxidase
Çırpan, Ali; Toppare, Levent Kamil; Department of Chemistry (2004)
Synthesis and characterization of conducting copolymers were achieved by using thiophene-3-yl acetic acid cholesteryl ester (CM) and poly (3-methylthienyl methacrylate) (PMTM). A new polythiophene containing a cholesteryl side chain in the b- position was chemically polymerized in nitromethane/carbon tetrachloride using FeCl3 as the oxidizing agent. Polymerization was also achieved by constant current electrolysis in dichloromethane. Subsequently, conducting copolymers of thiophene-3-yl acetic acid choleste...
Characterization of conducting polymers of ester linkage containing thiophene derivatives via mass spectroscopy
Aslan, Evren; Toppare, Levent Kamil; Department of Chemistry (2004)
In order to investigate the thermal and structural characteristics of terepthalic acid bis-(2-thiophen-3-yl-ethyl)ester (TATE), decanedioic acid bis-(2-thiophen-3-yl- ethyl) ester (DATE) and octanoic acid 2-thiophen-3-yl-ethyl ester (OTE), their corresponding homopolymers, copolymers with thiophene and polythiophene, pyrolysis mass spectrometry technique was utilized. The results were discussed in detail considering the effects of spacer group in between ester linkages. Thermal Gravimetry Analysis was used ...
Modified acrylic hydrogels as controlled release systems
Pınardağ, Fatma Esra; Hasırcı, Nesrin; Department of Chemistry (2006)
In this study, pH-sensitive poly(acrylamide-co-acrylic acid) hydrogels were synthesized as controlled release systems in the presence of N,N-methylene bisacrylamide as crosslinker and ammonium persulfate as initiator. A set of hydrogels were used in the form they were prepared. One set of hydrogels were prepared as porous networks by incorporating sodium chloride into the reaction medium and then leaching of it after the completion of polymerization reaction. Two sets of hydrogels were modified by argon-pla...
Synthesis and characterization of poly(dihalophenylene oxide)s and its derivatives from diammine bis(trihalophenolato) Cu(II) complexes
Sonsuz, Muammer; Gökağaç Arslan, Gülsün; Department of Chemistry (2004)
In this study, synthesis and characterization of poly(dihalophenylene oxide)s were done by thermal decomposition of diamminebis(trichlorophenolato) copper(II) and diamminebis(tribromophenolato) Cu(II) complexes in solid state. 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and ammonia were used as ligands in the complex syntheses. The complexes were characterized by means of X-ray diffraction, FTIR, DSC, mass spectroscopy, magnetic susceptibility and C, H, N elemental analyses. Synthesized complexe...
Citation Formats
B. Yiğitsoy, “Synthesis of a new thiophene derivative and its uses as an electrochromic device component,” M.S. - Master of Science, Middle East Technical University, 2006.