Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance prediction of implicitly defined estimators of non-random parameters
Download
20230115_Thesis.pdf
Date
2023-1-11
Author
Mehmetcik, Erdal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
216
views
145
downloads
Cite This
This thesis study is concerned with performance prediction for estimators with non-random parameters. A rather general class of estimators, called implicitly defined estimators (IDEs), is of main interest. An implicitly defined estimator declares the minimizer/maximizer of a selected cost/reward function as the parameter estimate. The maximum likelihood (ML) and the least squares estimators are among the well-known examples of this class. An exact MSE expression for implicitly defined estimators with a symmetric and unimodal objective function is derived. It is also shown that the expression reduces to the Cramer-Rao lower bound (CRLB) and mis-specified CRLB in the large sample size regime for ML and mis-specified ML estimation, respectively. The expression is shown to yield the Ziv-Zakai bound (without the valley filling function) for the maximum a posteriori (MAP) estimator when it is used in a Bayesian setting, that is, when an a-priori distribution is assigned to the unknown parameter. Extension of the suggested expression to the case of nuisance parameters is studied and some approximations are given to ease the computations for this case. Numerical results indicate that the suggested MSE expression not only predicts the estimator performance in the asymptotic region; but it is also applicable for the threshold region analysis, even for IDEs whose objective functions do not satisfy the symmetry and unimodality assumptions. Advantages of the suggested MSE expression are its conceptual simplicity and its relatively straightforward numerical calculation due to the reduction of the estimation problem to a binary hypothesis testing problem, similar to the usage of Ziv-Zakai bounds in random parameter estimation problems. The proposed approach for MSE approximation is adapted for bias prediction applications, and similar numerical studies are repeated. Several possible applications of the proposed performance prediction method are studied, and example cases are given.
Subject Keywords
Performance prediction
,
maximum likelihood
,
parameter estimation
,
Rician fading
,
bias prediction
,
Cramer Rao lower bound
,
Ziv Zakai lower bound
URI
https://hdl.handle.net/11511/101876
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Estimation methods for the three-parameter gamma distribution
İçli, Tülay; Yıldırım, Fetih; Department of Statistics (1991)
As a positively skewed distribution, gamma distribution plays an important role in the analysis of sample data originating from life-span, reaction time, reliability, | survival and related studies. Therefore, it is worth-while to deal with the estimation of its parameters. Since gamma distribution does not satisfy some of the regularity conditions, it is a member of non-regular distributions. Inclusion of the threshold parameter creates complications. This parameter can be estimated by the first order stat...
Performance tests of a novel electroencephalographic data-acquisition system
Usakli, Ali Bulent; Gençer, Nevzat Güneri (2007-02-16)
The aim of the this study is to present some performance tests of a novel 256-channel electroencephalographic data-acquisition system. The common mode rejection ratio of the system was measured as 102 dB for signals in the electroencephalography frequency range and 154 dB for de signals. System electrical noise (referred-to-input) is 1.76 mu V (rms) (0.21 mu V/root Hz for 70-Hz bandwidth). The cross-talk rejection was found to be at 58 dB. The dynamic range of the system was found 108 dB. The performance te...
Convergence Error and Higher-Order Sensitivity Estimations
Eyi, Sinan (2012-10-01)
The aim of this study is to improve the accuracy of the finite-difference sensitivities of differential equations solved by iterative methods. New methods are proposed to estimate the convergence error and higher-order sensitivities. The convergence error estimation method is based on the eigenvalue analysis of linear systems, but it can also be used for nonlinear systems. The higher-order sensitivities are calculated by differentiating the approximately constructed differential equation with respect to the...
Parameter estimation in generalized partial linear models with Tikhanov regularization
Kayhan, Belgin; Karasözen, Bülent; Department of Scientific Computing (2010)
Regression analysis refers to techniques for modeling and analyzing several variables in statistical learning. There are various types of regression models. In our study, we analyzed Generalized Partial Linear Models (GPLMs), which decomposes input variables into two sets, and additively combines classical linear models with nonlinear model part. By separating linear models from nonlinear ones, an inverse problem method Tikhonov regularization was applied for the nonlinear submodels separately, within the e...
Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm
GÜNEY, YEŞİM; ARSLAN, OLÇAY; Gökalp Yavuz, Fulya (2022-09-01)
© 2022 Elsevier Inc.In the analysis of repeated or clustered measurements, it is crucial to determine the dynamics that affect the mean, variance, and correlations of the data, which will be possible using appropriate models. One of these models is the joint mean–covariance model, which is a multivariate heteroscedastic regression model with autoregressive covariance structures. In these models, parameter estimation is usually carried on under normality assumption, but the resulting estimators will be very ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Mehmetcik, “Performance prediction of implicitly defined estimators of non-random parameters,” Ph.D. - Doctoral Program, Middle East Technical University, 2023.