Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Creating tougher interfaces via suture morphology in 3D-printed multi-material polymer composites by fused filament fabrication
Date
2023-01-05
Author
Altuntas, Umut
Çöker, Demirkan
Yavas, Denizhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
171
views
0
downloads
Cite This
This study presents a facile strategy for architecting the interface morphology to create tougher and stronger interfaces in additively manufactured multi-material polymer composites. A sutural interfacial morphology between two dissimilar polymer phases PLA (hard) and TPU (soft) is designed and fabricated by the fused filament fabrication technique. The proposed strategy utilizes one of the process parameters (i.e., overlap distance) to create sutural interfaces with soft protrusions. The microscopic inspections of the interface suggest that the proposed strategy can control the protrusion amplitude, which indirectly influences the interfacial defect density. A positive correlation between the overlap distance and resulting protrusion amplitude is obtained. The interfacial toughness measurements by the double cantilever beam test reveal a linear correlation between the interfacial toughness and protrusion amplitude. The proposed interfacial architecture can result in up to a 16–18-fold increase in the interfacial toughness in comparison with the baseline interface. Three distinct toughening mechanisms associated with the fracture of the proposed interfaces are identified: (1) geometric toughening associated with the interface roughness, (2) enhancement of the intrinsic interfacial toughness due to the reduced interfacial defect density between the PLA and TPU, and (3) additional plastic (or inelastic) energy dissipation within the TPU layer. The results reported in this study are anticipated to provide guidelines to produce multi-material polymer composites with stronger and tougher interfaces via additive manufacturing.
Subject Keywords
multi-material additive manufacturing
,
3D printing
,
suture interfaces
,
interfacial toughening
,
bioinspired interfaces
,
composite materials
,
DOUBLE CANTILEVER BEAM
,
ARCHITECTURED MATERIALS
,
FRACTURE-TOUGHNESS
,
3D
,
MECHANICS
,
DESIGN
,
MODELS
,
3D printing
,
bioinspired interfaces
,
composite materials
,
interfacial toughening
,
multi-material additive manufacturing
,
suture interfaces
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85145652984&origin=inward
https://hdl.handle.net/11511/102380
Journal
Additive Manufacturing
DOI
https://doi.org/10.1016/j.addma.2022.103359
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems
Atik, Ali Can; Ozkan, Metin Dundar; Ozgur, Ebru; Külah, Haluk; Yıldırım, Ender (IOP Publishing, 2020-11-01)
This paper presents an analytical model to estimate the actuation potential of an electrostatic parylene-C diaphragm, processed on a glass wafer using standard microelectromechanical systems (MEMS) process technology, and integrable to polydimethylsiloxane (PDMS) based lab-on-a-chip systems to construct a normally-closed microvalve for flow manipulation. The accurate estimation of the pull-in voltage of the diaphragm is critical to preserve the feasibility of integration. Thus, we introduced an analytical m...
Production of epoxide functionalized boehmite nanoparticles and their use in epoxide nanocomposites
Coniku, Anisa; Gündüz, Güngör; Maviş, Bora; Department of Chemical Engineering (2012)
In the present study the effects of addition of organically functionalized boehmite nano-particles on the mechanical properties of epoxy polymers were analyzed. Nanosize platelets of boehmite powders were produced via a hydrothermal process from the raw material aluminum trihydroxide Al(OH)3 provided by a a chemical supplier, but which in future studies can be replaced by local resources of aluminum trihydroxide available in Seydişehir, Turkey. The ground aluminum trihydroxide particles were submitted to a ...
Enhanced Optical Absorption and Spectral Photocurrent in a-Si:H by Single- and Double-Layer Silver Plasmonic Interfaces
Saleh, Zaki M.; NASSER, Hisham; ÖZKOL, Engin; GÜNÖVEN, Mete; ALTUNTAS, Burcu; Bek, Alpan; Turan, Raşit (2014-04-01)
Single and double plasmonic interfaces consisting of silver nanoparticles embedded in media with different dielectric constants including SiO2, SiNx, and Al:ZnO have been fabricated by a self-assembled dewetting technique and integrated to amorphous silicon films. Single plasmonic interfaces exhibit plasmonic resonances whose frequency is red-shifted with increasing particle size and with the thickness of a dielectric spacer layer. Double plasmonic interfaces consisting of two different particle sizes exhib...
Fabrication of microfluidic devices for dielectrophoretic and acoustophoretic applications using high precision machining
Soheila, Zenaili; Çetin, Barbaros; Özer, Mehmet Bülent; Süleyman, Büyükkoçak (2014-07-03)
In this study, the fabrication of microfluidic devices for dielectrophoretic and acoustophoretic based applications with high-precision CNC machining has been presented. For both devices, molds out of stainless steel have been fabricated, and polymer molding is implemented. For dielectrophoretic device, the metal electrodes have been fabricated using high-precision machining and embedded into the device during the molding process. For acoustophoretic device, piezoelectric slides have been embedded into the ...
Design and Optimization of an Electromagnetic Micro Energy Scavenger with Parylene Cantilevers
Sarı, İbrahim; Balkan, Raif Tuna; Külah, Haluk (2007-11-29)
This paper presents the design, optimization, and implementation of an electromagnetic micro energy scavenger that uses an array of parylene cantilevers on which planar coils are fabricated. The coils are connected electrically in series to increase the voltage that is generated by virtue of the relative motion between the coils and the magnet. A detailed mathematical modeling and optimization of the design for various cases are carried out.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Altuntas, D. Çöker, and D. Yavas, “Creating tougher interfaces via suture morphology in 3D-printed multi-material polymer composites by fused filament fabrication,”
Additive Manufacturing
, vol. 61, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85145652984&origin=inward.