Creating tougher interfaces via suture morphology in 3D-printed multi-material polymer composites by fused filament fabrication

Altuntas, Umut
Çöker, Demirkan
Yavas, Denizhan
This study presents a facile strategy for architecting the interface morphology to create tougher and stronger interfaces in additively manufactured multi-material polymer composites. A sutural interfacial morphology between two dissimilar polymer phases PLA (hard) and TPU (soft) is designed and fabricated by the fused filament fabrication technique. The proposed strategy utilizes one of the process parameters (i.e., overlap distance) to create sutural interfaces with soft protrusions. The microscopic inspections of the interface suggest that the proposed strategy can control the protrusion amplitude, which indirectly influences the interfacial defect density. A positive correlation between the overlap distance and resulting protrusion amplitude is obtained. The interfacial toughness measurements by the double cantilever beam test reveal a linear correlation between the interfacial toughness and protrusion amplitude. The proposed interfacial architecture can result in up to a 16–18-fold increase in the interfacial toughness in comparison with the baseline interface. Three distinct toughening mechanisms associated with the fracture of the proposed interfaces are identified: (1) geometric toughening associated with the interface roughness, (2) enhancement of the intrinsic interfacial toughness due to the reduced interfacial defect density between the PLA and TPU, and (3) additional plastic (or inelastic) energy dissipation within the TPU layer. The results reported in this study are anticipated to provide guidelines to produce multi-material polymer composites with stronger and tougher interfaces via additive manufacturing.
Additive Manufacturing


Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems
Atik, Ali Can; Ozkan, Metin Dundar; Ozgur, Ebru; Külah, Haluk; Yıldırım, Ender (IOP Publishing, 2020-11-01)
This paper presents an analytical model to estimate the actuation potential of an electrostatic parylene-C diaphragm, processed on a glass wafer using standard microelectromechanical systems (MEMS) process technology, and integrable to polydimethylsiloxane (PDMS) based lab-on-a-chip systems to construct a normally-closed microvalve for flow manipulation. The accurate estimation of the pull-in voltage of the diaphragm is critical to preserve the feasibility of integration. Thus, we introduced an analytical m...
Production of epoxide functionalized boehmite nanoparticles and their use in epoxide nanocomposites
Coniku, Anisa; Gündüz, Güngör; Maviş, Bora; Department of Chemical Engineering (2012)
In the present study the effects of addition of organically functionalized boehmite nano-particles on the mechanical properties of epoxy polymers were analyzed. Nanosize platelets of boehmite powders were produced via a hydrothermal process from the raw material aluminum trihydroxide Al(OH)3 provided by a a chemical supplier, but which in future studies can be replaced by local resources of aluminum trihydroxide available in Seydişehir, Turkey. The ground aluminum trihydroxide particles were submitted to a ...
Enhanced Optical Absorption and Spectral Photocurrent in a-Si:H by Single- and Double-Layer Silver Plasmonic Interfaces
Saleh, Zaki M.; NASSER, Hisham; ÖZKOL, Engin; GÜNÖVEN, Mete; ALTUNTAS, Burcu; Bek, Alpan; Turan, Raşit (2014-04-01)
Single and double plasmonic interfaces consisting of silver nanoparticles embedded in media with different dielectric constants including SiO2, SiNx, and Al:ZnO have been fabricated by a self-assembled dewetting technique and integrated to amorphous silicon films. Single plasmonic interfaces exhibit plasmonic resonances whose frequency is red-shifted with increasing particle size and with the thickness of a dielectric spacer layer. Double plasmonic interfaces consisting of two different particle sizes exhib...
Fabrication of microfluidic devices for dielectrophoretic and acoustophoretic applications using high precision machining
Soheila, Zenaili; Çetin, Barbaros; Özer, Mehmet Bülent; Süleyman, Büyükkoçak (2014-07-03)
In this study, the fabrication of microfluidic devices for dielectrophoretic and acoustophoretic based applications with high-precision CNC machining has been presented. For both devices, molds out of stainless steel have been fabricated, and polymer molding is implemented. For dielectrophoretic device, the metal electrodes have been fabricated using high-precision machining and embedded into the device during the molding process. For acoustophoretic device, piezoelectric slides have been embedded into the ...
Design and Optimization of an Electromagnetic Micro Energy Scavenger with Parylene Cantilevers
Sarı, İbrahim; Balkan, Raif Tuna; Külah, Haluk (2007-11-29)
This paper presents the design, optimization, and implementation of an electromagnetic micro energy scavenger that uses an array of parylene cantilevers on which planar coils are fabricated. The coils are connected electrically in series to increase the voltage that is generated by virtue of the relative motion between the coils and the magnet. A detailed mathematical modeling and optimization of the design for various cases are carried out.
Citation Formats
U. Altuntas, D. Çöker, and D. Yavas, “Creating tougher interfaces via suture morphology in 3D-printed multi-material polymer composites by fused filament fabrication,” Additive Manufacturing, vol. 61, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: