Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties

2023-01-01
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surface area and, at the same time, altered the surface chemistry of 316L SS to provide chromium oxide-and hydroxide-rich surface oxide layers. In vitro experiments showed that ND surfaces promoted up to a 68% higher osteoblast viability on the fifth day of culture. Immunofluorescence images confirmed a well-spread cytoskeleton organization on the ND surfaces. In addition, higher alkaline phosphate activity and calcium mineral synthesis were observed on the ND surfaces compared to non-anodized 316L SS. Furthermore, a 71% reduction in Staphylococcus aureus (S. aureus) and a 58% reduction in Pseudomonas aeruginosa (P. aeruginosa) colonies were observed on the ND surfaces having a 200 nm feature size compared to non-anodized surfaces at 24 h of culture. Cumulatively, the results showed that a ND surface topography fabricated on 316L SS via anodization upregulated the osteoblast viability and functions while preventing S. aureus and P. aeruginosa biofilm synthesis.
ACS BIOMATERIALS SCIENCE & ENGINEERING

Suggestions

Anodization of 316L stainless steel for implant applications
Erdoğan, Yaşar Kemal; Ercan, Batur (2021-06-10)
316L stainless steel (SS) surfaces were modified via anodization to form nanopit structures with aim of improving its corrosion resistance, bone cell adhesion, proliferation and enhance its bioactivity. Surface characterization studies revealed that nanopit structures were composed of Fe2O3 and Cr2O3. The in vitro results showed that nanopit surfaces enhanced bone cell proliferation. Thus, we concluded that fabrication of nanostructures on 316L SS surfaces is a promising way to enhance bone cell functions f...
Anodized Tantalum Surfaces for Orthopedic Applications
Uslu, Ece; Ercan, Batur (null; 2018-04-30)
Currently used implant materials do not suffice the needs of patients mainly due to their poor osseointegration with the juxtaposed bone tissue, which ultimately leads to failure of the implant. To overcome this issue, better orthopedic implants exhibiting bioactive characteristics are required. Tantalum is a good candidate as a new generation orthopedic implant materials due to its superior mechanical and chemical properties compared to the currently-used metallic implant materials. However, its bioinert n...
Comprehensive Evaluation of the Biological Properties of Surface-Modified Titanium Alloy Implants
Piszczek, Piotr; Radtke, Aleksandra; Ehlert, Michalina; Jedrzejewski, Tomasz; Sznarkowska, Alicja; Sadowska, Beata; Bartmanski, Michal; Erdoğan, Yaşar Kemal; Ercan, Batur; Jedrzejczyk, Waldemar (2020-02-01)
An increasing interest in the fabrication of implants made of titanium and its alloys results from their capacity to be integrated into the bone system. This integration is facilitated by different modifications of the implant surface. Here, we assessed the bioactivity of amorphous titania nanoporous and nanotubular coatings (TNTs), produced by electrochemical oxidation of Ti6Al4V orthopedic implants' surface. The chemical composition and microstructure of TNT layers was analyzed by X-ray photoelectron spec...
Dip coating of calcium hydroxyapatite on Ti-6Al-4V substrates
Mavis, B; Tas, AC (2000-04-01)
Ti-6Al-4V alloy is the most commonly used metallic material in the manufacture of orthopedic implants. The main inorganic phase of human bone is calcium hydroxyapatite (Ca-10(PO4)(6)-(OH)(2), HA). To achieve better biocompatibility with bone, metal implants made of Ti-6Al-4V are often coated with bioceramics. Dip-coating techniques scarcely are used to apply HA onto metallic implants. New dipping-solution recipes to be used for HA coatings are described in this work. Scanning electron microscopy and X-ray d...
3D porous PCL-PEG-PCL / strontium, magnesium and boron multi-doped hydroxyapatite composite scaffolds for bone tissue engineering
Yedekçi, Buşra; Tezcaner, Ayşen; Evis, Zafer (2022-01-01)
Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolyme...
Citation Formats
Y. K. Erdoğan and B. Ercan, “Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties,” ACS BIOMATERIALS SCIENCE & ENGINEERING, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102429.