Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Anodization of 316L stainless steel for implant applications
Date
2021-06-10
Author
Erdoğan, Yaşar Kemal
Ercan, Batur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
360
views
0
downloads
Cite This
316L stainless steel (SS) surfaces were modified via anodization to form nanopit structures with aim of improving its corrosion resistance, bone cell adhesion, proliferation and enhance its bioactivity. Surface characterization studies revealed that nanopit structures were composed of Fe2O3 and Cr2O3. The in vitro results showed that nanopit surfaces enhanced bone cell proliferation. Thus, we concluded that fabrication of nanostructures on 316L SS surfaces is a promising way to enhance bone cell functions for implant applications.
URI
https://hdl.handle.net/11511/91259
Conference Name
20. Uluslararası Metalurji ve Malzeme Kongresi
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties
Erdoğan, Yaşar Kemal; Ercan, Batur (2023-01-01)
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surfac...
Anodization of Ti6Al7Nb Alloy for Orthopaedic Applications
İzmir, Merve; Ercan, Batur (null; 2017-12-31)
In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been w...
Epoxy-based composites and coatings: improvement of multifunctional properties
Çaldıklıoğlu, Almira; Bayram, Göknur; Department of Chemical Engineering (2019)
The purposes of this study are to improve mechanical properties, thermal stability, resistance to flammability, electrical conductivity and hydrophobicity of epoxy (E) by incorporation of expanded graphite (EG) and titanium dioxide (T) particles. In this study, sonication with the use of solvent method was primarily determined for the epoxy-based binary composite and coating preparation. By this method, the epoxy composites and coatings were produced by changing EG concentration as 0.05, 0.1, 0.25, 0.5, 0.7...
Anodization of titanium alloys for orthopedic applications
Izmir, Merve; Ercan, Batur (Springer Science and Business Media LLC, 2019-03-01)
In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been w...
Anodization of titanium alloys for orthopedic applications
İzmir, Merve; Ercan, Batur; Department of Metallurgical and Materials Engineering (2018)
In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties, leading to an extensive effort to engineer nanostructured oxide films on titanium and titanium alloy surfaces. In literature, there is a variety of different approaches to fabricate nanostructured oxide films, including hydrothermal treatment, sol-gel synthesis, physical vapor deposition, electrodeposition, and etc. Among these methods, electro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. K. Erdoğan and B. Ercan, “Anodization of 316L stainless steel for implant applications,” presented at the 20. Uluslararası Metalurji ve Malzeme Kongresi, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/91259.