Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mathematical problems of black-box computational technologies for continuum mechanics
Date
2023-02-16
Author
Martynenko, Sergey
Zhou, Weixing
Gökalp, İskender
Toktaliev, Pavel
Tarasov, Georgy
Rumiantsev, Egor
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
This paper discusses possible ways of computational technology development for segregated/coupled solving the systems of nonlinear partial differential equations in black-box software. These systems describe physical and chemical processes in the continuum mechanics approximation (multiphysics). The following requirements for the black-box numerical methods are formulated: - robustness (the least number of problem-dependent components); - efficiency (close-to-optimal algorithmic complexity); - parallelism (faster than the best sequential algorithm). Robust Multigrid Technique is used to compute the coarse grid correction. If the initial computational grid is structured, the developed approach has single additional problem-dependent component (the number of smoothing iterations) compared to the traditional single-grid Gauss-Seidel iterative method. If the initial computational grid is unstructured, the developed approach has three additional problem-dependent component (the number of smoothing iterations and intergrid transfer operators).
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149623029&origin=inward
https://hdl.handle.net/11511/102713
DOI
https://doi.org/10.1063/5.0136135
Conference Name
2021 Actual Problems of Continuum Mechanics: Experiment, Theory, and Applications
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (2011-08-13)
We present a fast and accurate analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). DNMs are commonly used as simplified models of metamaterials at resonance frequencies and are suitable to be formulated with surface integral equations. However, realistic metamaterials and their models are usually very large with respect to wavelength and their accurate solutions require fast algorithms, such as MLFMA. We consider iterative solutio...
Rigorous Analysis of Double-Negative Materials with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2012-02-01)
We present rigorous analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of numerical solutions are investigated when DNMs are formulated with two recently developed formulations, i.e., the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCHE). Simulation results on canonical objects are consistent with previous results in the literature on ordin...
On the smoothness of solutions of impulsive autonomous systems
Akhmet, Marat (Elsevier BV, 2005-01-01)
The aim of this paper is to investigate dependence of solutions on parameters for nonlinear autonomous impulsive differential equations. We will specify what continuous, differentiable and analytic dependence of solutions on parameters is, define higher order derivatives of solutions with respect to parameters and determine conditions for existence of such derivatives. The theorem of analytic dependence of solutions on parameters is proved.
Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation
Kotikanyadanam, Mohan; Göktepe, Serdar; Kuhl, Ellen (Wiley, 2010-05-01)
The objective of this work is the computational simulation of a patient-specific electrocardiogram (EKG) using a novel, robust, efficient, and modular finite element-based simulation tool for cardiac electrophysiology. We apply a two-variable approach in terms of a fast action potential and a slow recovery variable, whereby the latter phenomenologically summarizes the concentration of ionic currents. The underlying algorithm is based on a staggered solution scheme in which the action potential is introduced...
Design and performance analysis of a pump-turbine system using computational fluid dynamics
Yıldız, Mehmet; Albayrak, Kahraman; Çelebioğlu, Kutay; Department of Mechanical Engineering (2011)
In this thesis, a parametric methodology is investigated to design a Pump-Turbine system using Computational Fluid Dynamics ( CFD ). The parts of Pump-Turbine are created parametrically according to the experience curves and theoretical design methods. Then, these parts are modified to obtain 500 kW turbine working as a pump with 28.15 meters head. The final design of Pump-Turbine parts are obtained by adjusting parameters according to the results of the CFD simulations. The designed parts of the Pump-Turbi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Martynenko, W. Zhou, İ. Gökalp, P. Toktaliev, G. Tarasov, and E. Rumiantsev, “Mathematical problems of black-box computational technologies for continuum mechanics,” Novosibirsk, Rusya, 2023, vol. 2504, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149623029&origin=inward.