Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Boundary element solution of magnetohydrodynamic flow
Download
116357.pdf
Date
2001
Author
Erdönmez, Cengiz
Metadata
Show full item record
Item Usage Stats
50
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/10906
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme
Bozkaya, Canan; Tezer, Münevver (Wiley, 2006-06-20)
A numerical scheme which is a combination of the dual reciprocity boundary element method (DRBEM) and the differential quadrature method (DQM), is proposed for the solution of unsteady magnetohydro-dynamic (MHD) flow problem in a rectangular duct with insulating walls. The coupled MHD equations in velocity and induced magnetic field are transformed first into the decoupled time-dependent convection-diffusion-type equations. These equations are solved by using DRBEM which treats the time and the space deriva...
Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field
Tezer, Münevver; Bozkaya, Canan (Springer Science and Business Media LLC, 2008-03-01)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with one conducting and one insulating pair of opposite walls under an external magnetic field parallel to the conducting walls, is investigated. The MHD equations are coupled in terms of velocity and magnetic field and cannot be decoupled with conducting wall boundary conditions since then boundary conditions are coupled and involve an unknown function. The boundary element method (BEM) is ...
Boundary element-finite element acoustic analysis of coupled domains
İrfanoğlu, Bülent; Çalışkan, Mehmet; Department of Mechanical Engineering (2004)
This thesis studies interactions between coupled acoustic domain(s) and enclosing rigid or elastic boundary. Boundary element-finite element (BE-FE) sound-structure interaction models are developed by coupling frequency domain BE acoustic and FE structural models using linear inviscid acoustic and elasticity theories. Flexibility in analyses is provided by discontinuous triangular and quadrilateral elements in the BE method (BEM), and a rectangular plate and a triangular shell element in the FE method (FEM)...
Boundary element method solution of initial and boundary value problems in fluid dynamics and magnetohydrodynamics
Bozkaya, Canan; Tezer, Münevver; Department of Mathematics (2008)
In this thesis, the two-dimensional initial and boundary value problems invol\-ving convection and diffusion terms are solved using the boundary element method (BEM). The fundamental solution of steady magnetohydrodynamic (MHD) flow equations in the original coupled form which are convection-diffusion type is established in order to apply the BEM directly to these coupled equations with the most general form of wall conductivities. Thus, the solutions of MHD flow in rectangular ducts and in infinite regions...
Boundary element method for out-of-plane elasticity and other two dimensional problems
Ahmad, Syed Ateeq; Mengi, Yalçın; Department of Engineering Sciences (1994)
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Erdönmez, “Boundary element solution of magnetohydrodynamic flow,” Middle East Technical University, 2001.