Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Aerodynamic analysis of a full aircraft configuration using a panel method
Download
119092.pdf
Date
2002
Author
Kurtuluş, Dilek Funda
Metadata
Show full item record
Item Usage Stats
118
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/12300
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
AERODYNAMIC ANALYSIS OF SUPERSONIC FLOW OVER A SIMPLE AIRCRAFT GEOMETRY BY USING CST AND PANEL METHODS
Uğur, Levent; Turan, Sena; Gedik, Ramazan Kürşat; Adam, Ali Ata; Sezer Uzol, Nilay; Ertem, Sercan; Ayan, Erdem (2021-09-10)
In this paper, the aerodynamic properties of a selected aircraft geometry are calculated in supersonic flow condition using PANAIR. PANAIR is an open-source high-order panel method solver for irrotational and inviscid flows and it is more efficient than higher fidelity CFD analyses for the preliminary design process since it is faster and easier to use. A batch of supersonic analyses is completed for different wing/body configurations for the selected aircraft geometry and with various panel g...
Aerodynamic analysis of complex missile geometries ny panel methods
Önen, Cenk; Kavsaoğlu, Mehmet Şerif; Çelenligil, Cevdet; Department of Aeronautical Engineering (1996)
Aerodynamic analysis of flatback airfoils using vortex particle method
Haser, Senem Ayşe; Uzol, Oğuz; Department of Aerospace Engineering (2014)
In this thesis, aerodynamic analysis of flatback airfoils, which have been proposed and investigated to improve the aerodynamic performance of thick airfoils, is studied. Vortex particle method, which is commonly used for simulation of two dimensional, incompressible, viscous flows, is used for this purpose. In the content of this thesis, vortex particle method code developed by Kaya [1] is improved by changing method of diffusion and method of vorticity releasing from solid boundary. Deterministic Particle...
Aerodynamic optimization of wing-body configuration using discrete adjoint method
Yıldırım, Ahmet; Eyi, Sinan (2017-01-01)
© 2017, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.The gradient based sensitivities required by design optimization are obtained by three different methods based on three dimensional Euler equations. Finite difference, Direct and Adjoint methods are used to compute objective sensitivities. A cell centered, upwind based finite volume method is implemented to discretize the Euler equations. The flow solution is obtained by preconditioned matrix-free Newton-GMRES algorith...
Aerodynamic parameter estimation using flight test data
Kutluay, Ümit; Platin, Bülent Emre; Mahmutyazıcıoğlu, Gökmen; Department of Mechanical Engineering (2011)
This doctoral study aims to develop a methodology for use in determining aerodynamic models and parameters from actual flight test data for different types of autonomous flight vehicles. The stepwise regression method and equation error method are utilized for the aerodynamic model identification and parameter estimation. A closed loop aerodynamic parameter estimation approach is also applied in this study which can be used to fine tune the model parameters. Genetic algorithm is used as the optimization ker...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. F. Kurtuluş, “Aerodynamic analysis of a full aircraft configuration using a panel method,” Middle East Technical University, 2002.