Fuzzy logic guidance system design for guided missiles

Download
2003
Vural, A. Özgür
This thesis involves modeling, guidance, control, and flight simulations of a canard controlled guided missile. The autopilot is designed by a pole placement technique. Designed autopilot is used with the guidance systems considered in the thesis. Five different guidance methods are applied in the thesis, one of which is the famous proportional navigation guidance. The other four guidance methods are different fuzzy logic guidance systems designed considering different types of guidance inputs. Simulations are done against five different target types and the performances of the five guidance methods are compared and discussed.

Suggestions

Adaptive control of guided missiles
Tiryaki Kutluay, Kadriye; Yavrucuk, İlkay; Department of Aerospace Engineering (2011)
This thesis presents applications and an analysis of various adaptive control augmentation schemes to various baseline flight control systems of an air to ground guided missile. The missile model used in this research has aerodynamic control surfaces on its tail section. The missile is desired to make skid to turn maneuvers by following acceleration commands in the pitch and yaw axis, and by keeping zero roll attitude. First, a linear quadratic regulator baseline autopilot is designed for the control of the...
Missile autopilot design by projective control theory
Doruk, Reşat Özgür; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2003)
In this thesis, autopilots are developed for missiles with moderate dynamics and stationary targets. The aim is to use the designs in real applications. Since the real missile model is nonlinear, a linearization process is required to get use of systematic linear controller design techniques. In the scope of this thesis, the linear quadratic full state feedback approach is applied for developing missile autopilots. However, the limitations of measurement systems on the missiles restrict the availability of ...
Adaptive roll control of guided munitions
Öveç, Naz Tuğçe; Kutay, Ali Türker; Department of Aerospace Engineering (2016)
This thesis presents an adaptive roll control scheme for guided munitions. Guided munitions are air-to-air or air-to-surface weapons which have enhanced target hit capabilities with laser seekers or similar guidance utilities. The dynamic interferences in nonlinear regions of the flight envelope, leads the studies on control of guided munitions to search for adaptive solutions. The missile used in this study has no propulsive forces and do the adequate maneuvers commanded by the guidance algorithm with its ...
Aeroservoelastic modeling of a missile control
Nalcı, Mehmet Ozan; Kayran, Altan; Department of Aerospace Engineering (2013)
In this thesis, aeroservoelastic modeling of a typical Missile Control Fin was performed. MSC®PATRAN, MSC®NASTRAN, MSC®FlightLoads and Dynamics, MATLAB® and MATLAB®Simulink were used for technical computing, modeling and simulation throughout the study. Linear models of the control fin structure, aerodynamics and servo-actuator system were developed, so as to be able to analyze the aeroservoelastic system in frequency and time domains. The flutter characteristics of the missile control fin for different fli...
Missile guidance with impact angle constraint
Çilek, Barkan; Kutay, Ali Türker; Department of Aerospace Engineering (2014)
Missile flight control systems are the brains of missiles. One key element of a missile FCS is the guidance module. It basically generates the necessary command inputs to the autopilot.Guidance algorithm selection depends on the purpose of the corresponding missile type. In this thesis, missile guidance design problem with impact angle constraint is studied which is the main concern of anti-tank and anti-ship missiles. Different algorithms existing in the literature have been investigated using various anal...
Citation Formats
A. Ö. Vural, “Fuzzy logic guidance system design for guided missiles,” M.S. - Master of Science, Middle East Technical University, 2003.